Patent Pending
Efficient delivery and expression of exogenous proteins in cell populations (e.g., cells in the body) for gene therapy / gene editing applications, is an important goal in biomedicine. This can be hampered by inefficient transport of enzymes from outside the body to cells within the body. When delivering nucleic acids or proteins of interest (e.g., DNA editing enzymes), most delivery methods can only reach and enter a small subset of cells within a tissue. There is a need for compositions and methods for improved delivery of proteins of interest, and such is provided herein.
UC Berkeley researchers have discovered that delivery of a molecular cargo to a target cell can be more efficiently achieved by using a cell as the delivery vehicle. This can be accomplished by delivering a nucleic acid encoding an enveloped delivery vehicle (EDV) (one that comprises a molecular cargo), to a producer cell where the producer cell produces the EDV and thereby delivers the molecular cargo to neighboring cells (referred to herein as receiver cells). Thus, there is no human intervention between delivery of a subject nucleic acid (encoding the EDV) and subsequent delivery of EDVs to target cells (receiver cells).