This invention includes: 1) Applying amphiphilic peptides (AP) (e.g. E5-TAT, INF7-TAT, or similar peptides) in novel scenarios for delivering CRISPR-Cas9 RNPs and performing genome editing in primary human cells of substantial clinical value (human pluripotent stem cells [HSPCs], T cells) and mouse neuronal progenitor cells in vitro or in vivo. These peptides have also been used for delivering plasmid DNA as a DNA vaccine into human cells in culture, and into mouse tissue in vivo to produce a robust immune response. 2) Novel peptide sequences (derivatives of E5-TAT or INF7-TAT) with improved properties and/or improved activity (relative to the founder peptides) in delivering cargo into target cells. The inventors have created a library of related sequences, all with distinct activity in delivering cargo to different cell types. These novel peptide sequences have been applied to the same scenarios as above, with improved outcomes compared to the parent peptides, E5-TAT or INF7-TAT, in genome editing, and may provide benefits in delivery of plasmid DNA as well. This is especially valuable when delivering to cell types that are notoriously difficult to transduce, such as HSPCs and T cells, leading to new therapeutic opportunities. Background Biological macromolecules offer great potential as therapeutics but the greatest hurdle that remains is their efficient cell entry into target cell types. Cell entry is limiting for two very promising technologies, DNA vaccines and genome editing, and this invention aims to address the unmet need. DNA vaccines would provide a rapid and inexpensive approach to vaccination for a wide range of viral pathogens, but have been hampered by poor delivery of the DNA into the target cells, resulting in an immune response not potent enough for effective vaccination. DNA vaccines involve delivering a plasmid which encodes a viral protein into the nucleus of human cells, where it can be transcribed and then expressed to be recognized by the immune system. In order to improve their efficacy, DNA vaccines have been delivered via in vivo electroporation, a painful process that requires specialized equipment and repeat dosing. Genome editing holds immense therapeutic promise for correcting the genetic mutations underlying disease, or for preventing or treating non-genetic disease. Delivery of the genome editing enzymes, such as CRISPR-Cas9, into the cytosol or nuclei of cells in need of manipulation remains the largest hurdle. Delivering CRISPR-Cas9 as a ribonucleoprotein (RNP) complex offers many advantages compared to other approaches (e.g. the use of viral vectors or lipid nanoparticles), but the RNP lacks an inherent method of cell entry. Amphiphilic peptides (AP) enable transduction of macromolecules into cells and therefore the inventors have aimed to apply APs to delivering cargo such as CRISPR-Cas9 RNPs as well as plasmid DNA into target cell types. The activity of a specific AP in delivering cargo into a the cytosol of a cell is often dependent on the specific cargo being delivered as well as the specific cell type. Therefore, the inventors have created libraries of related APs with diversity in their amino acid sequence in order to allow delivery of macromolecular cargo to a range of cell types, dependent on the specific application. A peptide sequence derived from influenza hemagluttinin sequence, HA2, has been previously described and applied as an endosomolytic peptide (ELP). When the HA2 sequence is appended with TAT, a positively charged cell penetrating peptide sequence derived from the HIV TAT protein, the fusion peptide “HA2-TAT” is able to deliver macromolecular cargo across the cell membrane and also act as an ELP to allow endosomal escape. Derivatives of the HA2-TAT sequence with changes in the amino acid sequence of the peptide, such as the peptide “E5-TAT,” has improved properties compared to HA2-TAT in solubility as well as delivering cargo into cells. The INF7-TAT peptide has similar properties, where INF7 is another glutamine-rich analog of HA2 with improved properties for endosomal escape. HA2 and its derivates (E5, INF7) with and without fusion to cell penetrating peptides (HA2-TAT, E5-TAT, INF7-TAT) have been applied to delivering macromolecular cargo such as proteins and nucleic acids into cells.