Browse Category: Biotechnology > Genomics

[Search within category]

Methods For Generating Target Enrichment Probes For Genome Sequencing Applications

Hybridization capture approaches allow targeted high-throughput sequencing analysis at reduced costs compared to shotgun sequencing. Hybridization capture is particularly useful in analyses of genomic data from ancient, environmental, and forensic samples, where target content is low, DNA is fragmented and multiplex PCR or other targeted approaches often fail. Hybridization capture involves the use of "bait" nucleotides that capture genomic sequences that are of particular interest for the researcher. Current bait synthesis methods require large-scale oligonucleotide chemical synthesis and/or in vitro transcription. Both RNA and DNA bait generation requires synthesizing template oligonucleotides using phosphoramidite chemistry. Microarray-based synthesis generates oligonucleotides in femtomole scales with high chemical coupling error rates. Templates synthesized at small-scale require enzymatic amplification before use in hybridization capture.The solution proposed here involves a simple and highly efficient method to generate target probes using isothermal amplification. Target sequences are circularized and then amplified by rolling circle amplification. This method generates concatemers comprising thousands of copies of the target seqeuence. Restriction digestion of the amplified product then produces probes to use in target enrichment applications. 

(SD2024-269) Bento: An open-sourced toolkit for subcellular analysis of spatial transcriptomics data

Bento is an open-source software toolkit that uses single-molecule information to enable spatial analysis at the subcellular scale. Bento ingests molecular coordinates and segmentation boundaries to perform three analyses: defining subcellular domains, annotating localization patterns, and quantifying gene-gene colocalization. The toolkit is compatible with datasets produced by commercial and academic platforms. Bento is integrated with the open-source single-cell analysis software ecosystem.

Newborn Biomarkers of Cumulative Autism Risk Factors

Researchers at the University of California, Davis have identified DNA methylation biomarkers in placenta, as well as maternal and newborn blood, allowing early autism diagnosis and risk assessment.

Efficient Induction of Parthenogenesis in Crop Plants

Researchers at the University of California, Davis have developed a technology enabling hybrid crops to reproduce cloned seeds, boosting yield and stability.

Genes Controlling Barrier Formation in Roots

Researchers at the University of California, Davis have developed advancements in understanding exodermal differentiation in plant roots highlighting the role of two transcription factors in plant adaptation and survival.

High-Fidelity Cas13a Variants

Professor Giulia Palermo and colleagues from the University of California, Riverside and the University of Rochester have developed high-fidelity Cas13a variants with increased sensitivity for base pair mismatches.The activation of these Cas13a variants can be inhibited with a single mismatch between guide-RNA and target-RNA, a property that can be used for the detection of SNPs associated with diseases or specific genotypic sequences.  

Systems and Methods of Single-Cell Segmentation and Spatial Multiomics Analyses

Researchers at the University of California, Davis have developed a novel cell segmentation technology for accurate analysis of non-spherical cells and that offers a comprehensive, high-throughput approach for analyzing the transcriptomic and metabolomic data to study complex biological processes at the single-cell level.

Super-Resolution Three-Dimensional Spatial Biomolecule Identity And Abundance Assessment

This technology offers a groundbreaking approach to map biomolecules in 3D space with subcellular resolution, revolutionizing our understanding of tissue organization and disease propagation.

Highly Multiplexed Tagging Methods for RNA Imaging and Other Applications

Understanding the function of RNAs requires visualizing their location and dynamics in live cells. However, direct labeling and imaging individual endogenous RNAs in living cells is still needed. UC Berkeley researchers have developed a method to directly resolve individual endogenous RNA transcripts in living cells using programmable RNA-guided and RNA-targeting CRISPR-Csm complexes coupled with a variety of crRNAs that collectively span along the transcripts of interest.  The researchers demonstrated robust labeling of MAP1B and NOTCH2 mRNAs in several cell lines. We tracked NOTCH2 and MAP1B transcript transient dynamics in living cells, captured distinct mobilities of individual transcripts in different subcellular compartments, and detected translation dependent and independent RNA motions.  

Virus-encoded DNA-binding Proteins

Rapid virus evolution generates proteins essential to infectivity and replication but with unknown function due to extreme sequence divergence. Using a database of 67,715 newly predicted protein structures from 4,463 eukaryotic viral species, it was found that 62% of viral proteins are structurally distinct and lack homologs in the Alphafold database. Structural comparisons suggested putative functions for >25% of unannotated viral proteins.  UC Berkeley researcher have created new single stranded DNA (ssDNA) bindingproteins and double stranded (dsDNA) binding proteins, and methods and compositions for using them, such as binding to target DNA.   

Minimal RNA Targeting CRISPR Cas Systems

UC Berkeley researchers have indentified and characterized a novel CRISPR Cas13 subtype that exhibits unique and advantageous features for transcriptome editing applications. At approximately half the size of the smallest known Cas13 subtype, this novel subtype is the smallest CRISPR Cas effector identified to date. The compactness of this novel Cas13 subtype facilitates its delivery into a wide array of cell types using various delivery mechanisms, significantly enhancing its utility in genomic research and therapeutic applications. The novel Cas13 subtype retains the hallmark programmable RNA-targeting capability of the Cas13 family, enabling precise and efficient editing of RNA sequences. This feature is particularly valuable in the context of transcriptome engineering, where specific alterations to RNA molecules can modulate gene expression, correct genetic errors, or modulate the function of non-coding RNAs. The discovery of this compact Cas13 subtype opens new avenues for transcriptome editing, offering potential applications in functional genomics, gene therapy, and the development of novel therapeutic strategies targeting RNA. Its ease of delivery and potent RNA-editing capabilities position this novel Cas13 subtype as a valuable tool for both basic research and clinical applications in the field of genetic engineering and precision medicine.

Variant Cas12a Protein Compositions and Methods of Use

Class 2 CRISPR-Cas are streamlined versions in which a single Cas protein bound to RNA is responsible for binding to and cleavage of a targeted sequence. Theprogrammable nature of these minimal systems has facilitated their use as a versatile technology for genome editing.  CRISPR-Cas enzymes with reduced requirements for a protospacer-adjacent motif (PAM) sequence adjacent to the target site could improve the breadth of target sites available for genome editing.  UC Berkeley researchers have developed a novel PAM-loose 12a variants, nucleic acids encoding the variant Cas12a proteins and systems using these variants that make the Cas12a-based CRISPR technology much easier to design a DNA target for carrying out genome editing in human cells. 

Enhanced Nucleic Acid Delivery To Cells

mRNA-based cancer therapies include vaccination via mRNA delivery of tumor neoantigens, delivery of mRNA encoding for immune checkpoint and other protein therapeutics, and induced expression of anticancer surface proteins such as CAR expression in T cells. Success requires transfection of a critical number of immune cells together with appropriate immune-stimulation to effectively drive anti-tumor responses. UC Berkeley researchers have developed an adjuvant-assisted mRNA LNP delivery method that uses mRNA LNP and adjuvant to enhance delivery of nucleic acids to immune cells in vivo and stimulate immune cells. They demonstrated the use of this system to reduce mRNA reporter protein expression in the liver and enhance protein expression in the spleen in mice and also demonstrated this system can be used to genetically engineer T cells by delivering a Cre-recombinase mRNA construct- transfection and editing of approximately 4% of T cells is achieved in vivo. The immune response is superior in our system compared to current, commercial lipid nanoparticle delivery technologies.

Methods and Computational System for Genetic Identification and Relatedness Detection

Deoxyribonucleic acid- (DNA-) based identification in forensics is typically accomplished via genotyping allele length at a defined set of short tandem repeat (STR) loci via polymerase chain reaction (PCR). These PCR assays are robust, reliable, and inexpensive. Given the multiallelic nature of each of these loci, a small panel of STR markers can provide suitable discriminatory power for personal identification. Massively parallel sequencing (MPS) technologies and genotype array technologies invite new approaches for DNA-based identification. Application of these technologies has provided catalogs of global human genetic variation at single-nucleotide polymorphic (SNP) sites and short insertion-deletion (INDEL) sites. For example, from the 1000 Genomes Project, there is now a catalog of nearly all human SNP and INDEL variation down to 1% worldwide frequency. Genotype files, generated via MPS or genotype array, can be compared between individuals to find regions that are co-inherited or identical-by-descent (IBD). These comparisons are the basis of the relative finder functions in many direct-to-consumer genetic testing products. A special case of relative-finding is self-identification. This is a trivial comparison of genotype files as self-comparisons will be identical across all sites, minus the error rate of the assay. For many forensic samples, however, the available DNA may not be suitable for PCR-based STR amplification, genotype array analysis, or MPS to the depth required for comprehensive, accurate genotype calling. In the case of PCR, one of the most common failure modes occurs when DNA is too fragmented for amplification. For these samples, it may be possible to directly observe the degree of DNA fragmentation from the decreased amplification efficiency of larger STR amplicons from a multiplex STR amplification. In the case of severely fragmented samples, where all DNA fragments are shorter than the shortest STR amplicon length, PCR simply fails with no product.

Antisense Oligonucleotide Discovery Platform And Splice Modulating Drugs For Hemophilia

Aberrant splicing contributes to the etiology of many inherited diseases. Pathogenic variants impact pre-mRNA splicing through a variety of mechanisms. Most notably, variants remodel the cis-regulatory landscape of pre-mRNAs by ablation or creation of splice sites, and auxiliary splicing regulatory sequences such as exonic or intronic splicing enhancers (ESE and ISE, respectively) and splicing silencers (ESS and ISS, respectively). Splicing-sensitive variants cripple the integrity of the gene, resulting in the production of a faulty message that is either unstable or encodes an internally deleted protein. Antisense oligonucleotides (ASOs) are a promising therapeutic modality for rescuing pathogenic aberrant splicing patterns as their direct base pairing abilities make them highly customizable and specific to targets. Although challenges such as toxicity, delivery and stability represent barriers to the clinical translation of ASOs, solutions to these challenges exist, as exemplified by the recent FDA approval of multiple ASO drugs.Generally, ASO's that target splicing mutations are limited to mutations in and around splicing enhancers and exonic mutations are commonly not targeted because of the idea that the mutation causes a significant change in protein function. 

(SD2022-275) Methods and compositions governing the use of proteins and protein domains that enhance exon inclusion

The strategy employed by the invention is inspired by splicing factors, a category of RNA-binding protein that influence alternative splicing outcomes. These splicing factors are trans-acting, and act to enhance or silence exon inclusion by binding near or on the target exon and promoting or repressing the activity of splicing machinery. Scientifically, a highly programmable, minimally disruptive system to increase exon inclusion could allow for higher-throughput identification of functional roles of specific exons than have been previously shown.

(SD2024-136) A Gravitationally Resilient Automated Molecular Biology Platform

A patent-pending platform technology designed to work in any gravity, which includes in microgravity environments, able to execute advanced molecular biology workflows; representing a paradigm shift in automation for molecular biology.

A Family Of Phylogenetically Related Transcriptional Activation Domains

Eukaryotic transcription factors (TFs) control transcription with DNA binding domains and effector domains (DBDs). TFs contain long intrinsically disordered regions (IDRs) that do not fold into a single 3D structure and inhabit a dynamic ensemble of conformations. The IDRs of TFs contain effector domains like repression domains that bind to co-repressor complexes and activation domains (ADs) that bind to coactivator complexes. ADs are difficult to predict from protein sequence because they are poorly conserved and intrinsically disordered. UC Berkeley Researchers have developed an Acidic Exposure Model motivated a mechanistic, composition-based predictor that accurately identified known and new human ADs. The evolution of ADs remains largely unstudied and mysterious. In multiple sequence alignments ADs show much lower conservation than DBDs. In an aspect we disclose 673 highly active short transcriptional activation domains.  These sequences are all phylogenetically related. 

Engineering Nme2cas9 And Spycas9 For Improved Gene Editing Activities

UC Berkeley researchers have created variant CRISPR-Cas effector polypeptides (e.g., variant Cas9 proteins) with improved properties, such as improved editing efficiency and/or improved PAM sequence flexibility, as well as methods of modifying a target nucleic acid using a variant CRISPR-Cas effector polypeptide and methods of generating variant CRISPR-Cas effector polypeptides.

(SD2021-427) Upregulation of cellular proteins using coronavirus-derived protein/peptides fused to RNA-targeting effectors

Researchers from UC San Diego developed an invention that enables protein expression to be upregulated using specific proteins and/or peptide sequences derived from SARS-CoV-2 proteins that are engineered to recognize specific mRNA transcripts by fusion to RNA-targeting modules such as CRISPR/Cas systems. They anticipate that these proteins can be fused or tethered to any engineered RNA-targeting moiety/module such as PUF/Pum, and pentatricopeptide proteins.

In Vivo Gene Editing Of Tau Locus Via Liponanoparticle Delivery

Delivery technologies such as lipid nanoparticles (LNP) offer significant advantages over the delivery of free RNA for various RNA therapeutic, vaccine, and basic science applications. UC Berkeley researchers developed a new class of lipid nanoparticle (LNP) which is effective in delivering various types of nuclei acids in different tissues.  The LNP was successfully tested in in-vivo mouse models and therefore poses a significant promise in the gene editing field. The lipid formulation was packaged together with CRISPR Cas9 and a gRNA targeting the endogenous Tau locus. Tau dysrregulation is a pathological feature of Alzheimers disease, thus the invention provides a means to intervene in the development of pathological states associated with Tau aggregate formation. 

Cell Penetrating Peptides For Nucleic Acid And Protein Delivery In Plants

Researchers at UC Berkeley have developed methods to deliver biomolecules to plant cells using new plant-derived cell penetrating peptides (CPPs). Despite the revolution in DNA editing that the last decade has brought, plant genetic engineering has not been able to benefit to the same extent. This is due to certain challenges in plant physiology that limit the delivery of exogenous protein cargos, as required in the CRISPR-Cas9 system, primarily due to the plant cell wall. In mammalian cells, for instance, cargo delivery can be accomplished using cell-penetrating peptides (CPPs) which are short peptides that facilitate the transport of cargo molecules through the plasma membrane to the cytosol. While this technology has been optimized in mammalian cells, few have studied the delivery of CPPs in plants to verify whether the cell wall is permissible to these materials. Another barrier to the use of nanotechnologies for plant biomolecule delivery is the lack of quantitative validation of successful intracellular protein delivery. The near universal dependence on confocal microscopy to validate delivery of fluorescent proxy cargoes can be inappropriate for use in plants due to various physiological plant properties, for example intrinsic autofluorescence of plant tissues. Therefore, there exists an unmet need for new materials and methods to deliver biomolecules to plant cells and to confirm the delivery of proteins of varying sizes into walled plant tissues. Stage of Research The inventors have developed methods to deliver proteins into plant cells using cell penetrating peptides which are appropriate for use with CRISPR-Cas9 technology, siRNAs, zinc-finger nucleases, TALENs, and other DNA editing methods. They have also developed a biomolecule fluorophore-based assay to accurately quantitate protein delivery to plants cells.Stage of DevelopmentResearch - in vitro 

METHODS OF PRODUCING RIBOSOMAL RIBONUCLEIC ACID COMPLEXES FOR DIRECT RNA SEQUENCING

Long read nanopore sequencing can directly sequence RNA molecules, including rRNA, and result in full-length RNA sequences. rRNA sequencing is particularly useful for identifying microbes and full-length rRNA sequencing can identify microbes with post transcriptional modifications that confer antibiotic resistance. Such post transcriptional modifications are invisible to amplification based sequencing or other sequencing techniques that require reverse transcription.Before this technology was developed, there were few if any efficient methods for preparing rRNA libraries for direct RNA sequencing, particularly for microbial identification in either a clinical or an environmental setting.   

Add-Seq: Quantitative Genome-Wide, Single-Molecule, And Long-Range Nucleosome Profiling

In cells, DNA is organized by wrapping DNA strands around histone proteins, creating protein-DNA complexes called nucleosomes which comprise the basic unit of chromatin. Chromatin is associated with regions of low gene expression, as compacted DNA is inaccessible to proteins that would promote transcription. Conversely, regions in the DNA not bound by histones experience higher gene expression, as this DNA is readily available to be transcribed.  Nucleosomes are not uniformly positioned on a DNA molecule, and they change based on factors like which genes are expressed during different cellular processes. It is beneficial to understand where nucleosomes are positioned, as this can provide insight into how genes are regulated, or how factors like epigenetic modifications or chromatin structure affect this accessibility and can additionally illuminate gene expression patterns in disease for designing therapies. Nucleosome profiling is a technique used to study the positions of nucleosomes along a DNA molecule. Typically, histones are crosslinked to DNA, then the DNA is fragmented and digested leaving only regions protected by nucleosomes left for short-read sequencing. However, this fragmentation only reveals nucleosome positioning at the resolution of a few hundred base pairs, leaving the larger genomic context of these nucleosome positions to be desired. To address this, researchers at UC Santa Cruz developed Add-SEQ, a pipeline using long-read nanopore sequencing to map nucleosomes across long stretches > 10 kb of single DNA molecules.

Methods for Determining Base Locations in a Polynucleotide

An abasic site (i.e., an apurinic or apyrimidinic site) in a DNA or RNA strand is one in which the base is not present, but the sugar phosphate backbone remains intact. UC Santa Cruz researchers discovered that nanopore sequencers can readily detect the positions of abasic sites within a DNA strand during sequencing. This invention capitalizes on this discovery by using enzymes to generate abasic sites at places on a DNA strand that contain modified bases. The DNA strand can then be sequenced using nanopore sequencing, thereby providing a way of detecting modified bases.

  • Go to Page: