Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Medical > Therapeutics

Categories

[Search within category]

Bioengineered Wnt5a Therapeutics For Advanced Cancers

Researchers at the University of California, Davis have developed RNA-based therapeutics to treat Wnt5A-expressing cancers, including treatment-resistant prostate cancer.

Steroid Sulfatase Inhibitors For Hormone Related Cancers

Researchers at the University of California, Davis have developed several steroid sulfatase inhibitors (STSi) that can be used as a potential treatment for hormone related cancers, specifically castration resistant prostate cancer (CRPC) and breast cancer.

T cell Receptor cDNAs to Treat Gliomas

Brief description not available

T Cell Receptor cDNAs to Treat Gliomas

Brief description not available

AKR1C3 and Androgen Receptor-Inhibiting Compounds for Treatment of Advanced Cancers

Researchers at the University of California, Davis have developed compounds with the potential to be dual inhibitor therapies to target AKR1C3 and the androgen receptors that promote malignant cell growth.

Anti-microbial, Immune-modulating, Naturally-derived Adjunctive Therapies

Researchers at the University of California, Davis have developed adjunctive therapies applicable to multiple types of infectious conditions. These therapies – derived from compounds found in natural herbs - also have potential prophylactic efficacy.

A Broadly Neutralizing Molecule Against Clostridium Difficile Toxin B

Researchers at UCI have developed a family of recombinant protein therapeutics against Clostridium difficile designed to provide broad-spectrum protection and neutralization against all isoforms of its main toxin, TcdB. These antitoxin molecules feature fragments of TcdB’s human receptors which compete for TcdB binding, significantly improving upon existing antibody therapeutics for Clostridium difficile infections.

MicroRNA regulation of airway mucins for treatment of lung diseases

This invention describes a novel therapeutic microRNA target regulating mucus production for the management of symptoms caused by a range of lung diseases, including asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis, and the common cold. Recently, a specific miRNA, along with its highly homologous family members, has been shown to be dysregulated in asthmatic subjects. To modulate the effect of these miRNAs, antagomirs (which target specific endogenous miRNAs and dampen their effect) or miRNA mimics can be administered via an inhaler, allowing for the regulation of mucus production. This invention is at the preclinical stage, and in vivo testing in a mouse model of asthma has shown that treatment with a specific miRNA antagomir results in a significant reduction of airway mucus production. While there are currently no effective therapies targeting mucus production in the airways, miRNAs are a promising new avenue for therapeutic intervention as they are fast-acting and reversible. 

COMPOSITIONS AND METHODS FOR TREATING VIRAL INFECTIONS

As of June 2020, the pandemic caused by SARS-CoV-2 infections (Coronaviral Disease 2019 (Covid-19)) caused about 9 million infections and about 460,000 deaths worldwide. The pandemic is expected to expand in the late 2020, particularly, because of the lack of a therapeutically effective treatment for the disease.   UC Berkley researchers have discovered compositions and methods treating an RNA virus infection such as SARS-CoV-2 infections by administering combined effective amounts of an RNA-dependent RNA polymerase inhibitor, such as remdesivir, and a second therapeutic agent for treating infection with an RNA virus.

Mammalian Milk Oligosaccharides as a Potential Prophylactic and Treatment for Viral Respiratory Diseases

Researchers at the University of California, Davis have developed a method of using mammalian milk oligosaccharides as a potential prevention or treatment for viral respiratory diseases - including COVID-19 and influenza.

Reversing COVID-19 associated ARDS and cytokine storm with N-acetylglucosamine

The rapid emergence and spread of a novel coronavirus disease (COVID-19) has caused a global pandemic. Excessive inflammation leading to acute respiratory distress syndrome (ARDS) is the primary driver of mortality in severe COVID-19 cases, and is yet to be addressed by current therapeutics. Researchers at UCI and Mt. Sinai Hospital have therefore developed an anti-inflammatory treatment using N-acetylglucosamine to lower the mortality and need for ventilators in critically ill COVID-19 patients.

Agents for Mitochondrial Biogenesis

Researchers at the University of California, Davis, have developed compounds for the potential prevention and treatment of mitochondrial dysfunction disorders.

Implantable Substance Delivery Devices

This invention describes a method for preparing an implantable device made from biocompatible polymers for sustained delivery of a substance within a body of human or an animal.

Clearance of Senescent Cells by Activation of the Immune Response

Researchers at UCSF have developed a method to selectively clear senescent cells by stimulating an immune response. Accumulation of senescent cells underlies a number of disease conditions and age-related pathologies. Current approaches to clear this cell type use senolytics, these are small-molecules that induce cell death of the senescent cells. Unfortunately, these compounds are not truly specific and affect other non-pathogenic cells. UCSF researchers eliminate these off-target effects by utilizing the body’s immune system to selectively target senescent cells for clearance. They do this by activation and expansion of certain immune cells. Stimulating the immune system to clear these cells is unprecedented in the field and offers a new therapeutic modality to treat senescence associated conditions. The technology has been fully validated in a laboratory setting.

METHODS OF TREATING SARS-COV-2 INFECTION USING INHIBITORS OF LIPOGENESIS

As of June 2020, the pandemic caused by SARS-CoV-2 infections (Coronaviral Disease 2019 (Covid-19)) caused about 9 million infections and about 460,000 deaths worldwide. The pandemic is expected to expand in the late 2020, particularly, because of the lack of a therapeutically effective treatment for the disease. Therefore, methods of treating SARS-CoV-2 infection are desired.   UC Berkeley inventors have developed methods of treating a SARS-CoV-2 infection in a patient infected with SARS-CoV-2 by administering to the patient a therapeutically effective amount of an inhibitor of lipogenesis. The inhibitor of lipogenesis can be an inhibitor of a lipogenic enzyme or an activator of 5’AMP-activated protein kinase (AMPK).  

XNA enzymes to Validate and Treat Genetic Diseases

Allelic proteins are often considered undruggable targets, because therapeutics that interfere with these proteins while leaving the wild-type protein unharmed are difficult to come by. Researchers at UCI have developed a xeno-nucleic enzyme (XNAzyme) that offers a solution to this problem by selectively cleaving the mRNA of mutant alleles while leaving the wild-type mRNA unharmed. This novel gene silencing technology offers an efficient, safe, and effective approach to treating genetic diseases.

A Thin Film Nitinol Neurovascular Covered Stent For Small Vessel Aneurysms

UCLA researchers in the Department of Pediatrics have developed a thin and flexible stent that can be implanted in small vessels in the neurovascular system. Normal 0 false false false EN-US ZH-CN X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

Co-Administration Therapy to Prevent Neurodegeneration and Enhance Neuroprotection

Neurodegenerative diseases are a broad category of illnesses expected to affect 1 in 4 Americans. As they have a variety of underlying mechanisms and pathologies, there are currently no effective methods to prevent or modify disease progression. UCI researchers have developed a potential treatment utilizing a novel combination of two compounds for the abatement of brain inflammation and degeneration.

Combination treatment to rescue age related macular degeneration

Age-related macular degeneration (AMD) is a leading cause of blindness in people over 60 years old. One form, called “dry” AMD is caused by slow cell death of the central retinal pigment epithelial cells (RPE cells), and currently has no treatment. Researchers at UCI have found that by combining a repurposed FDA approved drug in combination with a natural product, they are able to prevent cell death of RPE cells by boosting mitochondria activity.

Novel Prodrug For Anti-Cancer Therapeutic Applications

Inventors at UCI have developed a modified nutrient transporter inhibitor for use as a cancer therapeutic with minimal side effects.

Method to Enhance the Effectiveness of HIV Vaccines

Researchers at the University of California, Davis have developed adjuvants that promotes the efficacy of HIV vaccines.

  • Go to Page: