Browse Category: Medical > Therapeutics

[Search within category]

Vaccines Using Macrophage Suppression

Researchers at the University of California, Davis have developed a technology that introduces vaccines that express macrophage-suppressing molecules to significantly enhance inflammatory T-cell functions for improved immune responses.

Macrophage Targeting Peptides - Peptide Sequences that are Specific to M1 And M2 Macrophages for Application in Molecular Imaging and Therapy

Researchers at the University of California, Davis have developed isolated peptides that selectively bind M1 and M2 macrophages to enable precise diagnosis and targeted treatment of macrophage-associated diseases, including cancer.

Cationic Silyl-Lipids for Enhanced Delivery of Anti-viral Therapeutics

Researchers at the University of California, Davis have developed an advancement in the field of healthcare technology, specifically in the development and application of silyl lipids for RNA vaccines.

Silyl-lipid N-acyl L-homoserine Lactones (AHLs) as Quorum Sensing Molecules (for Biofilms)

Researchers at the University of California, Davis have developed a potential therapeutic strategy aiming at disrupting intercellular communication of pathogens using quorum sensing molecules and silicon-based pharmacophores.

Silyl-lipid Cannabinoids with Enhanced Biological Activity

Researchers at the University of California, Davis have developed a therapeutic use of cannabinoids for the treatment of Neurodegenerative Disorders (NDDs).

Nanoplatform for Cancer Therapy

Researchers at the University of California, Davis have developed a nanoparticle system combining photothermal therapy and chemotherapy for enhanced cancer treatment.

Intranasal Delivery of Allopregnanolone

Researchers at the University of California, Davis have developed non-invasive methods for intranasally delivering the drug allopregnanolone.

Inhibitor for Preventing the Onset of Neurodevelopmental Disorders

Researchers at the University of California, Davis and the Chiba University Center for Forensic Mental Health in Japan have collaborated to develop an enzyme inhibitor that prevents the onset of neurodevelopmental disorders.

Targeting Cancer Cachexia with Soluble Epoxide Hydrolase Inhibitors

Researchers at the University of California, Davis have developed a therapeutic approach to prevent and treat cancer cachexia by inhibiting soluble epoxide hydrolase, promoting resolution of systemic inflammation, mitigating muscle wasting, and improving survival outcomes in preclinical models without inducing toxicity or immunosuppression.

Hydrogelated Cells for Regenerative Medicine Applications

Researchers at the University of California, Davis have developed a technology that introduces an approach to creating semi-living, non-replicating cellular systems for advanced therapeutic applications.

Site-specific Chemical Ligation of Native Human Serum Albumin as a Carrier for Drugs

Researchers at the University of California, Davis, have developed a method to prepare chemically well-defined HSA-drug conjugates, such that ligation can occur in vitro or in vivo under physiological condition.

Modified SYNGAP1 Protein Expressed in a Lentiviral Vector for the Treatment of Patients with SYNGAP1-related Intellectual Disability

Researchers at the University of California, Davis have developed a novel stem cell gene therapy approach utilizing a modified SYNGAP1 protein to treat Synaptic Ras GTPase Activating Protein 1-related intellectual disability (SRID).

  • Go to Page: