Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Medical > Therapeutics

Categories

[Search within category]

Therapeutic Approach for Inflammatory Bowel Disease by Targeting Microbial Proteases

Ulcerative colitis (UC), an inflammatory bowel disease (IBD), is characterized by chronic inflammation of the colon, with severity of mucosal inflammation being associated with a higher risk of work disability, hospitalization, colorectal cancer, and colectomy. Non-specific immunosuppressive agents targeting the host, such as steroids, thiopurines, and/or biologics, are used to offset the natural history of disease in patients with moderate-severe inflammation. These therapies are, however, associated with significant risks and often ineffective in adequately managing disease. Genomic technologies have identified associations between microbial dysbiosis, or temporal shifts in composition, and UC severity. While recent efforts extended profiling of microbiota in UC beyond genomics, it remains poorly understood if these shifts are causal or associative in nature, and which mechanisms govern pathogenic roles of the microbiome in UC.

Combination Therapy For Pancreatic Cancer

Pancreatic cancer is an aggressive disease with limited treatment options and a high mortality rate. Pancreatic cancer is the 3rd leading cause of cancer death in the United States; despite some recent advances in systemic therapy, survival remains dismal in large part due to its profound drug resistance and its propensity for early metastasis. Typically, diagnosis of pancreatic cancer occurs only with advanced stages of the disease since there are currently no early markers for detection. Individuals with pancreatic cancer have a poor prognosis due to the late diagnosis, the extent of metastasis, and ineffective treatments. Survival rates are dismal and pancreatic cancer is not typically responsive to radiation and chemotherapy. An alternative approach for the treatment of pancreatic cancer as well as the design of a new class of therapeutics that can be used to treat this devastating disease is an immediate unmet medical need.

Identification of a Novel Target for Inhibition of Leukemia

Rho-family small (~21kDa) GTPases are essential for regulation of numerous cellular functions. There are 20 members of the Rho family in mammals, of which four (Rac1, Rac2, Rac3, RhoG) belong to the Rac subfamily. Each Rac GTPase functions as a molecular switch by cycling between an active GTP-bound form and an inactive GDP-bound form. In addition to their normal cellular functions, Rac GTPases contribute to cancer development as downstream effectors of growth factor receptor signaling and oncogenic mutations in the Ras pathway. Rac GTPases represent attractive targets for therapy in hematologic cancer, however direct targeting of small GTPases has proved difficult and largely ineffective. A thorough understanding of the diverse mechanisms controlling Rac activation in cancer will therefore be essential towards identifying new therapeutic avenues and improving outcomes in patients One insight into the regulation/activation of the Rac GTPases involves examining Ras proteins and their signal transduction pathways since mutations that produce abnormally active Ras proteins are found in 30% of all human cancers. Moreover, after activation, RAS signaling is mediated through interaction with RAS-binding domains or through the domain RAS association (RA), transmitted to downstream effectors. Notably, many downstream effectors are oncogenes or tumor suppressor genes that are mutated or silenced in cancers independently of RAS. Ras proteins are involved in Ras association domain-containing protein 2 (RASSF2) and it has recently been shown that in Acute myeloid leukemia cells with low expression of RASSF2 are more resistant to pharmacological inhibition of Dedicator of cytokinesis protein 2 (DOCK2), a guanine nucleotide exchange factor (GEF). Acute myeloid leukemia cells with high expression of RASSF2 are sensitive to pharmacological inhibition of DOCK2.

Drug Repurposing for Treatment of Fatty Liver Disease and Diabetes

Nonalcoholic fatty liver disease (NAFLD) is a condition in which excess fat is stored in the liver, though not caused by heavy alcohol use. NAFLD is one of the most common causes of liver disease in the United States. NAFLD it typically asymptomatic but when NAFLD advances, it can result in the development of NASH (Nonalcoholic steatohepatitis) where inflammation and fibrosis are widespread in the liver, resulting in nonalcoholic steatohepatitis and liver cirrhosis. Mechanisms of NAFLD progression are poorly understood. Experts estimate that about 20% of people with NAFLD have NASH. Between 30% and 40% of adults in the United States have NAFLD. About 3% to 12% of adults in the United States have NASH. There are no existing FDA‐approved therapies for nonalcoholic fatty liver disease (NAFLD). NAFLD it typically asymptomatic but it can progress to nonalcoholic steatohepatitis and liver cirrhosis. Mechanisms of NAFLD progression are poorly understood. There are many FDA‐approved therapies for type 2 diabetes, including metformin, insulin, sulfonylureas, Glp‐1 receptor agonists, Dpp‐4 inhibitors, and Sglt2 inhibitors. These drugs work through diverse mechanisms such as increasing insulin secretion (sulfonylureas, Glp‐1 receptor agonists, Dpp‐4 inhibitors), direct insulin replacement (insulin), reducing glucose production by the liver (metformin), and stimulating excretion of glucose into urine (Sglt2 inhibitors).

Modulation of Protein Tyrosine Phosphatase Receptor Type A (PTPRA) to Treat Arthritis

Fibroblast-like synoviocytes (FLS) in the intimal lining of the joint synovium control the composition of the synovial fluid and extracellular matrix (ECM) of the joint lining. In rheumatoid arthritis (RA), FLS become aggressive and invasive, contributing to many aspects of RA pathology. FLS produce matrix metalloproteinases (MMPs) that break down the ECM, directly invade and digest the articular cartilage, promote bone erosion, and promote inflammation through secretion of interleukin 6 (IL-6), chemokines, and other inflammatory mediators. FLS are highly sensitive to the inflammatory environment present in rheumatoid joints. Growth factors, especially platelet-derived growvth factor (PDGF), stimulate FLS invasiveness. Inflammatory cytokines, particularly tumor necrosis factor-alpha (TNF) and interleukin-I (IL-1), enhance FLS aggressiveness, pro-inflammatory features and MMP production. Targeting of molecules that control FLS invasiveness and inflammatory output is being considered an option for development of new therapies for RA.   Many signaling pathways controlling FLS behavior rely upon phosphorylation of proteins on tyrosine residues, which results from the balanced action of protein tyrosine kinases (PTKs) and phosphatases (PTPs). We found that a protein (PTPRA) belonging to a novel and currently untapped class of drug targets is present at high levels in cells lining the joints of RA patients, where we believe it promotes the aggressive behavior of these cells in joint inflammation and destruction.

Bioengineered RNA Molecules for Cancer Therapy

Researchers at the University of California, Davis have developed a method to use biologic RNA molecules for cancer research and therapy.

Bioengineered Let-7c Therapy for HCC Treatment

Researchers at the University of California, Davis have developed a bioengineered, RNA-based treatment for advanced liver cancer and hepatocellular carcinoma (HCC).

Monoclonal Antibodies Specific to Canine PD-1 and PD-L1

Researchers at the University of California, Davis have developed monoclonal antibodies with multiple applications relevant to canine PD-1 and PD-L1.

Novel Mixtures For Synergistic Activation Of M-Channels

Epilepsy is a seizure causing neurological disorder that affects over 50 million people, and it is estimated that half are ineffectively treated with current therapeutic options. Researchers at UCI have isolated components of a plant extract used to treat epilepsy in Africa and discovered that, when combined with an existing epilepsy medication, the mixture greatly decreases epileptic episodes and significantly increases survival rates in rodent models of epilepsy.

Fusion Protein for Treatment of Inflammatory Diseases

Researchers at the University of California, Davis have developed a plant-based, fusion protein for use in the treatment of inflammatory diseases.

Methods of Inhibiting Caspase-6 for the Treatment Of Nash

Nonalcoholic steatohepatitis (NASH), characterized by hepatic steatosis with inflammation and liver damage, has become the leading cause of transplant and liver associated death. Moreover, numerous studies suggest that hepatocellular death is the key event triggering progression to fibrosis and cirrhosis for NASH and perhaps other liver diseases.  In normal liver, hepatocyte apoptosis plays a key role in liver homeostasis, maintaining equilibrium between the loss and replacement of hepatocytes. However, pathological conditions such as viral infection, alcoholic or nonalcoholic steatohepatitis and physical injury, lead to extensive hepatocyte apoptosis and liver damage. While inflammation contributes to the pericellular fibrosis at an early stage, sustained liver damage leads to scarring, bridging fibrosis and subsequent development of cirrhosis. Moreover, hepatocellular death is the major contributor to the pathogenesis of cirrhosis and hepatocellular carcinoma. Therefore, understanding the molecular mechanisms by which hepatocellular death is controlled may lead to new treatments for liver diseases.

Peptide Inhibitors of Idiopathic Pulmonary Fibrosis

Researchers at the University of California, Davis have developed a peptide that targets fibrogenic pathways in order to treat idiopathic pulmonary fibrosis. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:8.0pt; mso-para-margin-left:0in; line-height:107%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;}

Exosome-Mimicking Nanovesicles

Researchers at the University of California, Davis have developed a method of synthesizing stem cell-derived, exosome-mimicking, nanovesicles that have the therapeutic potential to rescue apoptotic neurons in culture.

Novel Treatment For Alzheimer’s Disease and Dementia

Pathological accumulation of phosphorylated Tau (pTau) and accumulation of amyloid-beta (Ab) fragments are the two major biochemical hallmarks of Alzheimer’s disease (AD). Effective strategies to remove Ab in AD-patient brains have been developed, but have not yet shown efficacy to slow cognitive decline in clinical trials. This finding has led to the idea that targeting Tau or combinatorial strategies that target both Tau and Ab are required to treat AD. Genetic, epidemiologic, and biochemical evidence suggests that predisposition to AD may arise from altered cholesterol metabolism, although the molecular pathways that may link cholesterol to AD phenotypes are only partially understood. Stimulation of a brain specific cytochrome that converts cholesterol to 24-hydroxycholesterol, which in turn reduces cholesteryl ester. Reduction of cholesteryl ester has been demonstrated to reduce pathological Tau phosphorylation in human neurons made from induced pluripotent stem cells. Also, low dose Efavirenz/Sustiva reduces neurofibrillary tangles in a mouse model. The pathway may run from cholesteryl ester to Tau via the proteasome.

Use of UBA7 and its Regulated Genes as Novel Biomarkers in Treating Human Cancers

Human Ubiquitin-like modifier-activating enzyme 7 (UBA7) is a protein is involved in protein modification, specifically involving the pathway for protein ubiquitination. The modification of proteins with ubiquitin is an important cellular mechanism for targeting abnormal or short-lived proteins for degradation. Ubiquitination involves at least three classes of enzymes: ubiquitin-activating enzymes, or E1s, ubiquitin-conjugating enzymes, or E2s, and ubiquitin-protein ligases, or E3s. UBA7  encodes a member of the E1 ubiquitin-activating enzyme family. Moreover, ubiquitination and ubiquitin-like post-translational modifications (PTMs) regulate activity and stability of oncoproteins and tumor suppressors. Biomarkers are very important as companion diagnostic tools to guide clinical practice in treating human cancers, especially for targeted therapies. In the era of precision medicine, it is important for development companion diagnostic tools that can guide clinical practice for treating human cancers using targeted therapies.

Novel microbial species that promote fetal tolerogenic immunity

New therapies to prevent the development of asthma and other chronic inflammatory diseases in infants using natural bacterial modulators of fetal immune development.

Neoantigen-specific antibodies for chemically directed immune targeting of KRAS tumors

UCSF scientists have discovered novel antibodies that can specifically and selectively recognize tumor-derived neoantigens. The antibodies can be used for IgG, BiTE or CAR-T-based targeted immunotherapy and small molecule-based directed immune targeting via combination therapy. This dual therapeutic approach has the potential to specifically recognize and treat KRAS (G12C) cancer cell populations with high specificity, significantly improve cancer treatment outcomes, and overcome risk of treatment resistance in patients.

Novel Methods To Eliminate Dormant HIV Reservoirs

Human immunodeficiency virus type-1 (HIV-1) is a pathogenic retrovirus and the causative agent of acquired immunodeficiency syndrome (AIDS) and AIDS-related disorders. There were 1.7 million new infections globally in 2018, and ~38 million people are currently living with HIV-1. Although the introduction of antiretroviral therapy (ART) has prevented millions of AIDS-related deaths worldwide, patients must continue to receive ART for the remainder of their lives. HIV-1 reservoirs persist even while subjects are on ART, leading to a rapid increase in viral replication when therapy is discontinued. Therefore, eradication of persistent HIV-1 reservoirs remains the main barrier to achieving a cure for HIV-1/AIDS. The prevailing view of persistence suggests that the virus remains in a latent state in memory CD4+ T cells regardless of plasma viral loads, allowing the virus to establish a life-long infection in the host. Since the latent virus is refractory to existing antiretroviral therapies, curative strategies are now focusing on agents that reactivate viral replication and render it susceptible to conventional therapy. Any strategy aimed at controlling and eradicating viral reservoirs in HIV-1-infected individuals must target such latent reservoirs. The mammalian genome encodes thousands of long noncoding RNAs (lncRNAs, >200 nucleotides), including intergenic lncRNAs (lincRNAs), which are increasingly recognized to play major roles in gene regulation. The pathophysiological functions and mechanisms of lncRNAs in gene regulation have started to emerge. Work over the last few years has begun to uncover the role of lncRNAs in modulating HIV-1 gene expression.

Switchable Chimeric Antigen Receptor-Engineered Human Natural Killer Cells

The existing CAR-engineered T cell-based (CAR-T) therapy represents one of the most successful immunotherapy approaches developed in recent years. Most CAR-T cell therapy has been used clinically to treat hematological malignancies by targeting the B cell-specific antigen, CD19. However, this approach is not without limitations due to toxicities such as by neurotoxicity or cytokine release syndrome. Additionally, CAR-T cells function only as autologous cells due to graft-versus-host disease that would develop if cells were obtained from another person. Therefore, CAR-T cells must be produced on a patient-specific basis. NK cells, on the other hand, function as allogenic cytotoxic effector cells that do not have to be utilized on a patient-specific basis and are proven to be less toxic since they do not cause cytokine release syndrome, neurotoxicity, or graft-versus-host disease. For these reasons, CAR-engineered NK (CAR-NK) cells have increasingly attracted interest as an alternative CAR-cell therapy. However, there exist other unmet challenges. Targeting CAR-based therapies against solid tumors has been challenging due to the lack of truly tumor-specific antigens as most targets are shared by non-malignant cells and can cause toxicity due to “on-target, off-tumor” effects.” A fine-tunable CAR therapy is useful to better identify and target tumors while limiting this toxicity.

Triazolo/Phenylpyrimidine Compounds as Novel Candidate Treatments for Schistosomiasis

Schistosomiasis is a disease caused by infection with parasitic flatworms called schistosomes. The three major medically important species are Schistosoma mansoni (causing intestinal schistosomiasis in Africa and South America), S. japonicum (intestinal schistosomiasis in East Asia), and S. haematobium (causing genitourinary schistosomiasis in Africa and the Middle East). Signs and symptoms may include abdominal pain, diarrhea, bloody stool, or blood in the urine.  The treatment of schistosomiasis serves three purposes: reversing acute or early chronic disease, preventing complications associated with chronic infection, and preventing neuroschistosomiasis. The goal of treatment is to remove the worms that produce the eggs which, in turn, are responsible for disease morbidity and mortality. There is no effective vaccine against schistosomiasis.

Novel small molecule drugs for the treatment of sleep disorders and depression

UCSF scientists have identified novel small molecules which are selective agonists and inverse agonists of the melatonin receptor types MT1 and MT2. The molecules have high in vitro and in vivo potency and potential to be utilized as a novel therapeutic for treating depression, jet lag, and sleep disorders.

Use of Thiazolidinediones for Treatment of Eosinophilic Esophagitis Pathologic Remodeling

Esophageal inflammatory disorders are gaining increased recognition in both adults and children. One example is eosinophilic esophagitis (EoE), which is an emerging and fast-growing disorder characterized by high levels of eosinophils in the esophagus, as well as esophageal cellular changes such as basal zone hyperplasia and esophageal remodeling that includes fibrosis and smooth muscle dysfunction. These complications can lead to trouble swallowing, strictures,and food impactions. EoE is thought to be provoked, in at least a subset of patients, by food allergies or airborne allergen exposure. EoE diagnosis is often associated with other hypersensitivity disorders, including asthma, rhinitis, and other food and aeroallergen inhalant sensitivities. Diagnosis requires the finding of 15 or more eosinophils per high power field (eos/hpf) within esophageal mucosal biopsies. Although EoE is becoming more frequently diagnosed throughout developing countries, many aspects of the disease remain unclear including its etiology, natural history and optimal therapy. Symptoms of EoE often mimic those of gastroesophageal reflux disease (GERD) and include vomiting, dysphagia, pain and food impaction. In the absence of long-term treatment, up to 70-80% of adults with eosinophilic esophagitis (EoE) may go on to develop esophageal strictures. This disease now is likely to occur in 1 in 1000 people in the population and will have a dramatic effect on the patients’ quality of life. While there are therapies that control inflammation, not all patients respond to these therapies and continue to progress to fibrotic changes. There are currently no medical treatments to directly target esophageal fibrosis.

Biomimetic Conductive Hydrogels

UCLA researchers in the Department of Bioengineering have developed a novel electrically conductive scaffold system with a hyaluronic acid (HA)-based hydrogel for biomimetic research to treat spinal cord and other central nervous system (CNS) injuries.

Improvement To Retroviral Vectors Containing The Human Ubiquitin C Promoter

UCLA researchers in the Department of Molecular Biology have developed a lentiviral vector, “pCCLc-roUBC”, containing the cellular promoter from the human ubiquitin C gene (UBC), to improve transgene expression in retroviral vectors.

Improved Highly Potent Specific Human Kunitz Inhibitor of Fibrinolytic Enzyme Plasmin

UCLA researchers in the School of Medicine have developed mutant polypeptides of the tissue factor pathway inhibitor-2 (TFPI-2) Kunitz domain 1 (KD1), which can serve as potent inhibitors of fibrinolysis.

  • Go to Page: