Browse Category: Medical > Gene Therapy

[Search within category]

Depletion and Replacement of Brain Border Myeloid Cells

A novel method for selectively targeting and modulating brain border-associated myeloid cells for the treatment of neurological disorders.

Advanced Vaccine Technology: Lipid Nanoparticle Adjuvants

This technology represents a pioneering approach to vaccine development, focusing on encapsulated adjuvants and antigens to enhance efficacy while minimizing side effects.

Engineered Virus-Like Particles For Delivery of Precision Genome Editors in Glaucoma

A revolutionary one-shot therapy for juvenile and adult-onset glaucoma affected by MYOC mutations, offering a permanent cure for this previously untreatable disease.

Polymeric Vectors For mRNA Delivery

A novel dendronized polypeptide architecture for efficient and safe mRNA delivery, suitable for anti-tumor immunotherapy.

Suppressing Cardiac Arrhythmia And Pump Dysfunction With Ischemia/Reperfusion And Failure

SUMO inhibitors offer a promising new therapy for protecting against cardiac rhythm disturbances and pump failure associated with heart attacks.

High-Fidelity Cas13a Variants

Professor Giulia Palermo and colleagues from the University of California, Riverside and the University of Rochester have developed high-fidelity Cas13a variants with increased sensitivity for base pair mismatches.The activation of these Cas13a variants can be inhibited with a single mismatch between guide-RNA and target-RNA, a property that can be used for the detection of SNPs associated with diseases or specific genotypic sequences.  

(SD2022-151) Engineered Protein Fusions that Bind G4C2 Human Repeats

Researchers from UC San Diego have engineered human zinc finger-containing fusion proteins that target and can destroy or modify human RNA transcripts that contain expanded G4C2 hexanucleotide repeats. This approach, which they have termed zinc fingerdirected RNA targeting, provides a means to, depending on the fusion protein, 1) target and degrade disease-causing RNA transcripts containing G4C2 expansions and to 2) target, label, and track the same transcripts in living cells.

(SD2022-222) Optimized CAG repeat‐targeting CRISPR/cas13d designs

Reseachers from UC San Diego demonstrated a proof of principle for a CAGEX RNA-targeting CRISPR–Cas13d system as a potential allele-sensitive therapeutic approach for HD, a strategy with broad implications for the treatment of other neurodegenerative disorders.

Nuclear Localization Signals Inside Cas9 To Enhance Genome Editing

Optimizing the editing efficiency of CRISPR-mediated enzymes is still needed.  This is especially true in therapeutic use cases, when it would be ideal to attain high rates of editing via a low, transient dose of the enzyme in the ribonucleoprotein (RNP) format used for multiple ex vivo clinical trials. Because many CRISPR enzymes are of bacterial origin, fusion to NLS motifs can greatly enhance editing efficiency. However, CRISPR protein yields can decrease – sometimes dramatically – if the construct bears toomany NLSs. UC Berkeley researchers have developed CRISPR proteins with enhanced editing efficiencies by introducing multiple nuclear localization signal (NLS) fused at rationally selected sites within the backbone of CRISPR-Cas9. These Cas9 variants showed they can improve editing efficiency in T cells compared to constructs with terminally-fused NLS sequences and can be produced with high purity and yield.  

Highly Multiplexed Tagging Methods for RNA Imaging and Other Applications

Understanding the function of RNAs requires visualizing their location and dynamics in live cells. However, direct labeling and imaging individual endogenous RNAs in living cells is still needed. UC Berkeley researchers have developed a method to directly resolve individual endogenous RNA transcripts in living cells using programmable RNA-guided and RNA-targeting CRISPR-Csm complexes coupled with a variety of crRNAs that collectively span along the transcripts of interest.  The researchers demonstrated robust labeling of MAP1B and NOTCH2 mRNAs in several cell lines. We tracked NOTCH2 and MAP1B transcript transient dynamics in living cells, captured distinct mobilities of individual transcripts in different subcellular compartments, and detected translation dependent and independent RNA motions.  

Virus-encoded DNA-binding Proteins

Rapid virus evolution generates proteins essential to infectivity and replication but with unknown function due to extreme sequence divergence. Using a database of 67,715 newly predicted protein structures from 4,463 eukaryotic viral species, it was found that 62% of viral proteins are structurally distinct and lack homologs in the Alphafold database. Structural comparisons suggested putative functions for >25% of unannotated viral proteins.  UC Berkeley researcher have created new single stranded DNA (ssDNA) bindingproteins and double stranded (dsDNA) binding proteins, and methods and compositions for using them, such as binding to target DNA.   

Variant Cas12a Protein Compositions and Methods of Use

Class 2 CRISPR-Cas are streamlined versions in which a single Cas protein bound to RNA is responsible for binding to and cleavage of a targeted sequence. Theprogrammable nature of these minimal systems has facilitated their use as a versatile technology for genome editing.  CRISPR-Cas enzymes with reduced requirements for a protospacer-adjacent motif (PAM) sequence adjacent to the target site could improve the breadth of target sites available for genome editing.  UC Berkeley researchers have developed a novel PAM-loose 12a variants, nucleic acids encoding the variant Cas12a proteins and systems using these variants that make the Cas12a-based CRISPR technology much easier to design a DNA target for carrying out genome editing in human cells. 

Variant TnpB and wRNA Proteins

TnpB protein has generated interest as a potential compact genome-editing tool, due to the short amino acid sequence (408 AAs for ISDra2 TnpB), which overlaps with the wRNA sequence in their genomes of origin. There is a need for compositions and methods that provide more efficient TnpB systems. UC Berkeley researchers have created variant TnpB proteins and variant wRNAs that increase cleavage activity and/or DNA binding activity (e.g., revealed as endonuclease activity such as on-target endonuclease activity). These variant TnpB proteins include an amino acid sequence having one or more amino acid substitutions relative to a corresponding wild type TnpB protein. Also provided are variant TnpB wRNAs that can form a complex with a TnpB protein and a second nucleotide sequence that can hybridize to a target sequence of a target nucleic acid, thereby guiding the complex to the target sequence.

(SD2022-275) Methods and compositions governing the use of proteins and protein domains that enhance exon inclusion

The strategy employed by the invention is inspired by splicing factors, a category of RNA-binding protein that influence alternative splicing outcomes. These splicing factors are trans-acting, and act to enhance or silence exon inclusion by binding near or on the target exon and promoting or repressing the activity of splicing machinery. Scientifically, a highly programmable, minimally disruptive system to increase exon inclusion could allow for higher-throughput identification of functional roles of specific exons than have been previously shown.

Use Of Viral Il-6 To Modulate Monocyte Differentiation To Boost Anti-Tumor Immunity

Researchers at the University of California, Davis have developed a virally derived homolog to increase the inflammatory response desirable in cancer immunotherapy.

Transcription Active Complex Targeting Cancer Drug From Viral Protein Sequence

Researchers at the University of California, Davis have developed a viral peptide therapeutic that targets MYC-based cancerous tumors.

Novel Solid Lipid Nanoparticle To Improve Heart Cardio Protection

A primary reason behind the lack of progress in heart therapeutics is the inability to use phenotypic human tissue-level approaches to discover novel therapies. In recent years, there have been significant advances in the development microphysiological systems (MPS), which recapitulate organ-level and even organism-level functions.   MPS are quickly becoming representative of the future of disease modeling and drug screening, therefore paving the way for complex in vitro models to dominate the preclinical drug discovery landscape. However, there has yet to be an effective LNP formulation for therapeutic mRNA delivery to the heart. Therefore, despite progress in this area, one of the remaining challenges is to develop a LNP formulation capable of diffusing within human cardiac muscle, transfecting cardiomyocytes, and escaping the endo-lysosome before degradation more efficiently than current strategies. UC Berkeley researchers and others have developed compositions and methods using lipid nanoparticles for delivery of a payload (e.g., messenger RNA (mRNA)) to the heart, for delivery of mRNA for transfection of cells and methods of treatment.

Novel molecular target and approach(es) for the bidirectional modulation of T-cell function

Researchers at UC Irvine have identified and tested a molecular target that regulates T cell function during chronic viral infection and cancer. The molecular target is one of the high mobility group proteins (HMGB2). HMGB2 is a DNA binding protein that regulates transcriptional processes, meaning that its modulation will have profound effects on T cell differentiation and ultimate function by altering the expression of many genes.

Gene Targets For Manipulating T Cell Behavior

Brief description not available

Compositions and Methods for Genome Editing

RNA-mediated adaptive immune systems in bacteria and archaea rely on Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) genomic loci and CRISPR associated (Cas) proteins that function together to provide protection from invading viruses and plasmids. Genome editing can be carried out using a CRISPR-Cas system comprising a CRISPR-Cas effector polypeptide and a guide nucleic acid, such as a guide RNA. However, unintended chromosomal abnormalities following on-target genome editing, such as chromosome loss, are potential concerns for genome editing. UC Berkeley researchers and others have developed a method to modulate the expression levels of the DNA damage response factor p53 in order to mitigate chromosomal abnormalities that occur after genome editing by nucleases like Cas9. The invention provides treatment methods by generating a modified cell and then administering the modified cell to an individual in need thereof and compositions having a CRISPR-Cas effector polypeptide, a guide nucleic acid, and an agent that increases the level of a p53 polypeptide in a mammalian cell.

Novel Cell Therapy for CTLA4 Haploinsufficiency

Scientists have developed a CRISPR-Cas9 based genome editing method for universal correction of disease-causing mutations in the CTLA4 gene, which most commonly manifest as a Primary Immunodeficiency. Current treatment involves monthly IV injections or weekly subcutaneous injections of a recombinant CTLA4-Ig fusion protein abatacept. This invention includes one-time infusion of a CTLA4-corrected autologous T cell therapy. The corrected patient cells are generated by ex vivo electroporation of a specific gRNA:Cas9 ribonucleoprotien (RNP) complex and cognate homology-directed-repair template (HDRT) targeting a functional copy of the CTLA4 gene within an intronic region of the endogenous CTLA4 gene. This combination allows for (1) highly efficient knockin (up to 70% in patient cells), (2) cell-type and context specific regulation of CTLA4 expression under natural promoter and regulatory elements, and (3) preservation of endogenous CTLA4 expression in uncorrected cells.

  • Go to Page: