Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Communications > Other


[Search within category]

Fabrication of N-face to Improve Telecommunications Efficiency

A new method to fabricate nitrogen-face (N-face) nitride-based electronic devices with low buffer leakage, low parasitic resistance, and high breakdown.

Resistively-Loaded Vee Dipole with Even-Mode Matched Balun for Ground-Penetrating Radar Applications

Researchers at the University of California, Davis have designed a resistively-loaded vee dipole (RLVD)  fed by an integrated even-mode matched Marchand balun with good out-of-band rejection, boresight gain, and lower side coupling and back gain.

Passive Coupling Balance Scheme for Long Traveling Complex Differential Signals

Researchers at the University of California, Davis have developed a passive coupling balance technique to suppress signal mismatches for long traveling N-pair complex differential signals.

SpeakQL: Towards Speech-driven Multi-Modal Querying

Automatic speech recognition (ASR) systems currently in use work well for routine tasks such as posing a question to SIRI (Apple) or Alexa (Amazon), but do not interface with more complex datasets. Complex datasets take into account when the user considers a speech-driven system to query structured data, but these require new approaches. Some of these approaches have used new querying modalities such as visual, touch-based and natural language interfaces (NLIs) whereby user commands are translated into the Structured Query Language (SQL). Unfortunately these new proposals are not suitable for complex datasets.

Vertical Cavity Surface-Emitting Lasers with Continuous Wave Operation

An m-plane VCSEL with an active region that has thick quantum wells and operation in continuous wave.

On-Chip Calibration And Control Of Optical Phased Arrays

Optimized on-chip control architecture and optimized phase shifter tuning strategy that scales to extremely large channel counts with significantly reduced on-chip footprint.

Use of Augmented Reality for Enhanced & Efficient Communication Technologies

A communication interaction paradigm based on augmented reality that enables a remote collaborator to control his/her viewpoint onto a remote scene and communication information with visual references such as identifying objects, locations, directions, spatial instructions, etc.

A Digital Polar and a ZVS Contour Based Hybrid Power Amplifier

Researchers in the UCLA Department of Electrical Engineering have created a hybrid digital polar and zero switching voltage (ZVS) contour power amplifier, offering higher efficiency for up to 36 dB peak-to-average ratio.

Millimeter-Wave CMOS Transceiver with PCB Antenna for Contactless Wave-Connectors

UCLA researchers in the Department of Electrical Engineering have developed a novel interconnect solution that allows for high data bandwidth, compact form-factor, reduced power consumption and universal compatibility to existing interconnect practices.

Energy-Efficient All-Optical Nanophotonic Computing

Researchers at the University of California, Davis, have developed a new computing and signal processing platform based on nanophotonics and nanoelectronics to decrease power consumption and improve overall computing speed with all-optical inputs and outputs.

3D Magnetic Topological Structures for Information Storage

Researchers at the University of California, Davis, have developed a new way to directly create 3-dimensional topological magnetic structures that allows for efficient information storage with potentially low energy dissipation.

III-Nitride Vertical Transistor with Ion Implantation Formed Aperture Region

Researchers at the University of California, Davis have developed a method of fabricating a III-nitride vertical transistor with aperture region formed using ion implantation as a path to achieve selective area doping.

Integrated Antennas And Phased Arrays With Mode-Fee Electromagnetic Bandgap Materials

The invention is a multifunctional electromagnetic structure that enhances antennas performance significantly. Built using an electromagnetic bandgap material, it eliminates scan blindness for phased array structures, along all scan directions. The invention simultaneously improves the radiation pattern as well.

GPS-Based Miniature Oceanographic Wave Measuring Buoy System

Oceanic monitoring helps coastal communities, economies, and ecosystems thrive. The coastlines and open oceans prove to be very important to maritime countries for recreation, mineral and energy exploitation, shipping, weather forecasting and national security. As solar power, GPS, and telecomm improvements have been made, directional wave buoys have emerged and set the standard in wave monitoring. Non-directional and directional wave measurements are of high interest to users because of the importance of wave monitoring for successful marine operations. Wave data and climatological information derived from the data are also used for a variety of engineering and scientific applications.

Scalable Phased Array Standing Wave Architecture

Researchers at the University of California, Davis have developed a standing wave architecture for scalable and wideband millimeter wave and terahertz radiator and phased arrays.

A Hybrid Silicon Laser-Quantum Well Intermixing Wafer Bonded Integration Platform

An approach for integrating InP-based photonic devices together with low loss silicon photonics and complementary metal-oxide-semiconductor (CMOS) electronics.

Interleaved Training And Limited Feedback For Multiple-Antenna Systems

Multi-antenna communication schemes provide greater link quality and reliability than single antenna systems, but also require coordination between the antennas for maximum effect. The traditional method of training (aligning) the antennas before data transmission becomes infeasible for arrays with many transmitters. The inventors at UCI have made many antennas accessible by interleaving the training and feedback stages.

Passive Wideband Interferometer Enabled Error Feedback Transmitter

Researchers at the University of California, Davis have designed a high spectral purity error feedback transmitter.

A Hundred Tiny Hands

100 Tiny Hands is an experiential learning program that imparts science, technology, engineering, and math (“STEM”) education to children ages six to twelve using storybook-inspired curriculum coupled with interactive educational “toolboxes.”

Monolithically Integrated Implantable Flexible Antenna for Electrocorticography and Related Biotelemetry Devices

A sub-skin-depth (nanoscale metallization) thin film antenna is shown that is monolithically integrated with an array of neural recording electrodes on a flexible polymer substrate. The structure is intended for long-term biometric data and power transfer such as electrocorticographic neural recording in a wireless brain-machine interface system. The system includes a microfabricated thin-film electrode array and a loop antenna patterned in the same microfabrication process, on the same or on separate conductor layers designed to be bonded to an ultra-low power ASIC.

Metal-free affinity media/agents for the selective capture of histidine-rich peptide sequences

The present invention utilizes metal-free synthetic polymer-based materials for the purification of peptides and proteins containing or being fused with histidine-rich sequences, which does not damage the function of the target protein and is less costly.

High-Efficiency Broadband Doubler

Researchers at the University of California, Davis have developed a high-efficiency broadband doubler.

External Cavity Laser Based Upon Metasurfaces

UCLA researchers in the Department of Electrical Engineering have developed a novel approach for terahertz (THz) quantum-cascade (QC) lasers to achieve scalable output power, high quality diffraction limited, and directive output beams.

Method To Characterize Cut Gemstones Using Optical Coherence Tomography

The invention uses optical coherence tomography to created a three-dimensional map of cut gemstones, both loose and in settings. This map will provide gemologists with information about the location and characteristics of defects, as well as providing a more accurate measure of weight for cut gemstones that are analyzed in their settings. This information can be used to accurately determine the overall quality and monetary value of cut gemstones.

Energy Efficient Trigger Word Detection via Accelerometer Data

Researchers at the University of California, Davis have developed an energy-efficient voice monitoring technique for smart devices, such as smartphones and wearables, based on accelerometer data.

  • Go to Page: