Please login to create your UC TechAlerts.
Request a new password for
Required
Stacked-Via Metal Tube And Wall For Noise Isolation At Transistor And Circuit Levels In Ics
Brief description not available
Efficient Reed-Solomon Code Repair for Distributed Systems
Innovative methods and devices for improving error correction and reducing repair bandwidth in distributed systems using enhanced Reed-Solomon codes.
Indoor Localization Using LTE Signals with Synthetic Aperture Navigation
This technology enhances indoor pedestrian localization accuracy using LTE signals by mitigating multipath errors through synthetic aperture navigation.
LTE-IMU Based Indoor Localization Technology
An innovative approach to indoor localization using LTE signals and IMU data, enhancing accuracy and reliability for navigation.
Vehicular Simultaneous Localization and Mapping (SLAM) with Lidar and LTE Fusion
An innovative approach to vehicle localization and mapping using lidar and cellular LTE data, enhancing accuracy without relying on GNSS signals.
A Novel Method for RF Field Programming and Intelligent Surface Design Using Diffraction-Inducing Elements
Generating Massive Synthetic RF Data for RF Sensing Applications
RF Signal-Based Human Context Inference for Health and Safety Monitoring
RF Signals for Crowd Analytics and Collective Behavior
Spectral Kernel Machines With Electrically Tunable Photodetectors
Spectral machine vision collects both the spectral and spatial dependence (x,y,λ) of incident light, containing potentially useful information such as chemical composition or micro/nanoscale structure. However, analyzing the dense 3D hypercubes of information produced by hyperspectral and multispectral imaging causes a data bottleneck and demands tradeoffs in spatial/spectral information, frame rate, and power efficiency. Furthermore, real-time applications like precision agriculture, rescue operations, and battlefields have shifting, unpredictable environments that are challenging for spectroscopy. A spectral imaging detector that can analyze raw data and learn tasks in-situ, rather than sending data out for post-processing, would overcome challenges. No intelligent device that can automatically learn complex spectral recognition tasks has been realized. UC Berkeley researchers have met this opportunity by developing a novel photodetector capable of learning to perform machine learning analysis and provide ultimate answers in the readout photocurrent. The photodetector automatically learns from example objects to identify new samples. Devices have been experimentally built in both visible and mid-infrared (MIR) bands to perform intelligent tasks from semiconductor wafer metrology to chemometrics. Further calculations indicate 1,000x lower power consumption and 100x higher speed than existing solutions when implemented for hyperspectral imaging analysis, defining a new intelligent photodetection paradigm with intriguing possibilities.
Storage Codes With Flexible Number Of Nodes
A revolutionary approach to enhancing data recovery in distributed systems through flexible storage codes.
(SD2022-255) A robust approach to camera radar fusion
Researchers from UC San Diego have developed RadSenNet, a new approach of sequential fusing of information from radars and cameras. The key idea of sequential fusion is to fundamentally shift the center of focus in radar-camera fusion systems from cameras to radars. This shift enables their invention (RadSegNet) to achieve all-weather perception benefits of radar sensing. Keeping radars as the primary modality ensures reliability in all situations including occlusions, longrange and bad weather.
Silent Speech Interface Using Manifold Decoding Of Biosignals
Researchers at the University of California, Davis have developed a technology that provides a novel method for decoding biosignals into speech, enhancing communication for individuals with speech impairments.
Computational Framework for Numerical Probabilistic Seismic Hazard Analysis (PSHA)
Probabilistic Seismic Hazard Analysis (PSHA) has become a foundational method for determining seismic design levels and conducting regional seismic risk analyses for insurance risk analysis, governmental hazard mapping, critical infrastructure planning, and more. PSHA traditionally relies on two computationally intensive approaches: Riemann Sum and conventional Monte Carlo (MC) integration. The former requires fine slices across magnitude, distance, and ground motion, and the latter demands extensive synthetic earthquake catalogs. Both approaches become notably resource intensive for low-probability seismic hazards, where achieving a COV of 1% for a 10−4 annual hazard probability may require 108 MC samples. UC Berkeley researchers have developed an Adaptive Importance Sampling (AIS) PSHA, a novel framework to approximate optimal importance sampling (IS) distributions and dramatically reduce the number of MC samples to estimate hazards. Efficiency and accuracy of the proposed framework have been validated against Pacific Earthquake Engineering Research Center (PEER) PSHA benchmarks covering various seismic sources, including areal, vertical, and dipping faults, as well as combined types. Seismic hazards are calculated up to 3.7×104 and 7.1×103 times faster than Riemann Sum and traditional MC methods, respectively. Coefficients of variation (COVs) are below 1%. Enhanced “smart” AIS PSHA variants are also available that outperform “smart” implementations of Riemann Sum by a factor of up to 130.
Sensing with RF Signals by Exploiting Diffraction
Improved Optical Atomic Clock In The Telecom Wavelength Range
Optical atomic clocks have taken a giant leap in recent years, with several experiments reaching uncertainties at the 10−18 level. The development of synchronized clock networks and transportable clocks that operate in extreme and distant environments would allow clocks based on different atomic standards or placed in separate locations to be compared. Such networks would enable relativistic geodesy, tests of fundamental physics, dark matter searches, and more. However, the leading neutral-atom optical clocks operate on wavelengths of 698 nm (Sr) and 578 nm (Yb). Light at these wavelengths is strongly attenuated in optical fibers, posing a challenge to long-distance time transfer. Those wavelengths are also inconvenient for constructing the ultrastable lasers that are an essential component of optical clocks. To address this problem, UC Berkeley researchers have developed a new, laser-cooled neutral atom optical atomic clock that operates in the telecommunication wavelength band. The leveraged atomic transitions are narrow and exhibit much smaller black body radiation shifts than those in alkaline earth atoms, as well as small quadratic Zeeman shifts. Furthermore, the transition wavelengths are in the low-loss S, C, and L-bands of fiber-optic telecommunication standards, allowing the clocks to be integrated with robust laser technology and optical amplifiers. Additionally, the researchers have identified magic trapping wavelengths via extensive studies and have proposed approaches to overcome magnetic dipole-dipole interactions. Together, these features support the development of fiber-linked terrestrial clock networks over continental distances.
Advanced Human Pose Recognition Technology
This technology revolutionizes human pose recognition by overcoming dataset and environmental limitations.
Next Generation Of Emergency System Based On Wireless Sensor Network
Recent mass evacuation events, including the 2018 Camp Fire and 2023 Maui Fire, have demonstrated shortcomings in our communication abilities during natural disasters and emergencies. Individuals fleeing dangerous areas were unable to obtain fast or accurate information pertaining to open evacuation routes and faced traffic gridlocks, while nearby communities were unprepared for the emergent situation and influx of persons. Climate change is increasing the frequency, areas subject to, and risk-level associated with natural hazards, making effective communication channels that can operate when mobile network-based systems and electric distribution systems are compromised crucial. To address this need UC Berkeley researchers have developed a mobile network-free communication system that can function during natural disasters and be adapted to most communication devices (mobile phones and laptops). The self-organized, mesh-based and low-power network is embedded into common infrastructure monitoring device nodes (e.g., pre-existing WSN, LoRa, and other LPWAN devices) for effective local communication. Local communication contains dedicated Emergency Messaging and “walkie-talkie” functions, while higher level connectivity through robust gateway architecture and data transmission units allows for real-time internet access, communication with nearby communities, and even global connectivity. The system can provide GPS-free position information using trilateration, which can help identify the location of nodes monitoring important environmental conditions or allowing users to navigate.
Telehealth-Mediated Physical Rehabilitation Systems and Methods
The use of telemedicine/telehealth increased substantially during the COVID-19 pandemic, leading to its accelerated development, utilization and acceptability. Telehealth momentum with patients, providers, and other stakeholders will likely continue, which will further promote its safe and evidence-based use. Improved healthcare by telehealth has also extended to musculoskeletal care. In a recent study looking at implementation of telehealth physical therapy in response to COVID-19, almost 95% of participants felt satisfied with the outcome they received from the telehealth physical therapy (PT) services, and over 90% expressed willingness to attend another telehealth session. While telehealth has enhanced accessibility by virtual patient visits, certain physical rehabilitation largely depends on physical facility and tools for evaluation and therapy. For example, limb kinematics in PT with respect to the shoulder joint is difficult to evaluate remotely, because the structure of the shoulder allows for tri-planar movement that cannot be estimated by simple single plane joint models. With the emergence of gaming technologies, such as videogames and virtual reality (VR), comes new potential tools for virtual-based physical rehabilitation protocols. Some research has shown digital game environments, and associated peripherals like immersive VR (iVR) headsets, can provide a powerful medium and motivator for physical exercise. And while low-cost motion tracking systems exist to match user movement in the real world to that in the virtual environment, challenges remain in bridging traditional PT tooling and telehealth-friendly physical rehabilitation.
(SD2019-414) MIMO synchronized large aperture Radar
Researchers from UC San Diego developed Pointillism, a system that enables radars to overcome the challenges posed by specular reflections, sparsity and noise in the radar point clouds, to provide high-fidelity perception of the scene with 3D bounding boxes. Pointillism consists of multiple low-resolution radars placed in a optimal fashion to maximize the spatial diversity and scene information. Pointillism combines this spatial diversity with novel multi-radar fusion algorithms to tackle the problem of specular reflections, sparsity and noise in radar point clouds. Building upon the hardware and algorithms, Pointillism also introduces a novel data-driven approach that enables the detection of multiple dynamic objects in the scene, with their accurate location, orientation and 3D dimensions. Furthermore, Pointillism enables such perception even in inclement weather, thereby paving a way for radar to be the main-stream sensor for autonomous perception.
Flippo The Robo-Shoe-Fly: A Foot Dwelling Social Wearable Companion
Social interactions in school and office settings traditionally involve few coordinated physical interactions, and most group engagement centers on sharing electronic screens. Wearable robot companions are a promising new direction for encouraging coordinated physical movement and social interaction in group settings. A UC Santa Cruz researcher has developed a wearable social companion that encourages users to interact via physical movement.
Systems And Methods For Cooperative Smart Lane Selection
Load-Modulation Network for High-Efficiency 5G Power Amplifiers
Magneto-Optic Modulator
Reducing Electrical Current Variations in Phase-Locked Loop Systems
Researchers at the University of California, Davis have developed a method of eliminating electrical current mismatches in the charge pumps of phase-locked loops (PLL) systems - thereby increasing their power efficiency and phase detection capabilities.