Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Semiconductors > Processing and Production


[Search within category]

Advanced On-Chip Thermal Sensing

Prof. Albert Wang and his colleagues from the University of California, Riverside have developed a novel in-hole PN diode thermal sensor that can be readily made in commercial IC production processes. The technology is advantageous over current thermal sensors because the in-hole diode is designed to take up a minimal amount of space while it ensures high-resolution thermal sensing. With the new concept validated experimentally, the new in-hole diode sensor can be a potential solution to achieving full-chip dynamic thermal mapping with a fine spatial resolution for accurate real-time chip-scale thermal management for future ICs. Fig 1: TCAD simulation shows desired I-V-T behaviors for the new in-hole diode thermal sensor across a wide temperature range.

Integration And Mass Transfer Of Microleds

Brief description not available

Nanoparticles-Enabled Casting of Bulk Ultrafine Grained/Nanocrystalline Metals

UCLA researchers in the Department of Mechanical and Aerospace engineering have fabricated bulk, thermally stable ultrafine grained/nanocrystalline metals using conventional casting techniques.

Quality Factor Enhancement For Highly-Selective Miniaturized Bandpass Filters

UCLA researchers in the Department of Electrical and Computer Engineering have developed narrowband and high-selective filters with zero-insertion loss.

Diamond On Nanopatterned Substrates

UCLA researchers in the Department of Materials Science and Engineering have developed a nanofabrication method for improving the thermal properties of polycrystalline diamond films grown by chemical vapor deposition.

Magnetoelectric Device with Two Dielectric Barriers

UCLA researchers in the Department of Electrical and Computer Engineering have developed a magnetoelectric memory device that uses two dielectric barriers for improved voltage-controlled magnetic anisotropy (VCMA) and tunnel magnetoresistance (TMR) properties.

Selective Deposition Of Diamond In Thermal Vias

UCLA researchers in the Department of Materials Science & Engineering have developed a new method of diamond deposition in integrated circuit vias for thermal dissipation.

A Nonvolatile Magnetoelectric Random Access Memory Circuit

UCLA researchers in the Department of Electrical Engineering have developed a nonvolatile random-access memory circuit (MeRAM) that is very dense, fast, and consumes extremely low power.

Voltage-Controlled Magnetic Memory Element With Canted Magnetization

UCLA researchers in the Department of Electrical Engineering have developed a method for voltage-controlled switching of the magnetization direction in MeRAM circuits.

Wideband Distributed Mixers

This technology is a simple, novel ultra wideband distributed complementary metal-oxide-semiconductor mixer, which incorporates on-chip distributed transmission line. A wideband distributed mixer is capable of operation over a wide range of frequencies, and can carry large amounts data up to 250 feet, which makes it attractive for military and law-enforcement use.

Multilayer Batch Microfabricated Magnetic Shielding

UCLA researchers in the Department of Electrical Engineering have developed a novel batch microfabrication technique for microscale shielding layers, simultaneously pushing the limits of minimum size, maximum shielding factor, flexibility, and cost.

Highly Efficient Perovskite/Cu(In, Ga)Se2 Tandem Solar Cell

UCLA researchers in the Department of Materials Science and Engineering have developed Perovskite/Cu(In, Ga)Se2 (PVSK/CIGS) tandem photovoltaic devices with ~22% efficiency.

Controlled Homo-Epitaxial Growth Of Hybrid Halide Crystals

Organic-inorganic hybrid perovskites have demonstrated tremendous potential for next-generation electronic and optoelectronic devices due to their remarkable carrier dynamics. However, current studies of electronic and optoelectronic devices have been focused on polycrystalline materials, due to the challenges in synthesizing device compatible high quality single crystalline materials.

Photo-induced Metal Printing Technique for Creating Metal Patterns and Structures Under Room Temperature

UCLA researchers in the Department of Materials Science and Engineering have developed a low-temperature metal patterning technique.

Stroboscopic Universal Structure-Energy Flow Correlation Scattering Microscopy

Flexible semiconductors are far less costly, resource and energy intensive than conventional silicon production. Yet, as an unintended consequence of semiconductor printing, the films produced contain structural heterogeneities, or defects, which can limit their capacity to shuttle energy, or, information, over device-relevant scales. To be able to fully embrace this new, greener process, it is essential to elucidate which physical material properties most influence energy flow and which defects are most deleterious to efficient energy transport so that they can be targeted for elimination at the materials processing stage. Although some rather complex approaches have recently been used to track energy flow, the applicability of each one depends on specifics of the semiconductor properties (bandgap, excitonic vs charge carrier form of excitation, strong absorption or emission). Existing techniques cannot therefore be applied to a broad range of materials, and often necessitate adapting samples to fit the specific requirements of the technique. A broadly applicable approach is therefore needed to non-invasively and simultaneously reveal and correlate material morphology and energy flow patterns across many scales.    Researchers at the University of California, Berkeley have developed a new high-sensitivity, non-invasive, label-free, time-resolved optical scattering microscope able to map the flow of energy in any semiconductor, and correlate it in situ to the semiconductor morphology. This device has been shown as a far simpler approach to spatio-temporally characterize the flow of energy in either charge or exciton form, irrespective of the electronic properties of the material, and with few-nm precision. Furthermore, built into this approach is the unprecedented capability to perform in situ correlation to the underlying physical structure of the material. 

Mechanical Process For Creating Particles Using Two Plates

UCLA researchers in the Department of Chemistry and Biochemistry & Physics and Astronomy have developed a novel method to lithograph two polished solid surfaces by using a simple mechanical alignment jig with piezoelectric control and a method of pressing them together and solidifying a material.

Trademark: Flexible Fan Out Wafer Processing And Structure: Flextrate

UCLA researchers in the Department of Electrical Engineering have invented a novel biocompatible flexible device fabrication method using fan-out wafer level processing (FOWLP).

Interleaved 3D On-Chip Differential Inductor And Transformer

UCLA researchers in the Department of Electrical Engineering have developed an interleaved three-dimensional (3D) on-chip differential inductors and transformers used in silicon based radio frequency/millimeter wave integrated circuits

On-Chip Tunable Artificial Dielectrics

UCLA Researchers in the Department of Electrical Engineering have developed and reduced-to-practice an innovative method for making chips with tunable dielectrics so the wavelength of RF signals can be modified to achieve frequency tuning effects without effecting noise interference.

Shaped Piezoelectric Micromachined Ultrasonic Transducer Device

Piezoelectric Micromachined Ultrasonic Transducers (pMUTs) have attracted industry attention for their good acoustic matching, small geometry, low cost-by-batch fabrication, and compatibilities with CMOS and consumer electronics. While planar pMUTs have reasonable performance over bulk piezoelectric transducers, certain deficits remain in terms of coupling and acoustic pressure outputs, DC displacements, bandwidth, and power consumption. To address these deficiencies, researchers at the University of California, Berkeley, have developed a next generation of shaped pMUTs which are no longer fully defined by resonance frequency and can accommodate larger pressure outputs and bandwidths. This new pMUT apparatus can significantly boost overall performance while dramatically reducing power as compared to flat diaphragm state-of-the-art pMUTs.

Enhancing Photoluminescence Quantum Yield for High Performance Optoelectrics

Surface defects dominate the behavior of minority carriers in semiconductors and optoelectronic devices. Photoluminescence quantum yield (QY), which dictates efficiency of optoelectrics such as LEDs, lasers, and solar cells, is extremely low in materials with a large number of surface defects. Researchers at UC Berkeley and Lawrence Berkeley National Laboratory have developed a bis(trifluoromethane) sulfonamide (TFSI) solution for passivation/repair of surface defects in 2D transition metal dichalcogenide (TMDC). This air-stable solution-based chemical treatment provides unmatched photoluminescence QY enhancement to values near 100% without changing the surface morphology. The treatment eliminates defect-mediated non-radiative recombination, which eliminates the low performance limit of TMDC and enhances its minority carrier lifetime. This novel development can address surface passivation in numerous semiconductors which will lead to highly efficient light emitting diodes, lasers and solar cells based on 2D materials.

Thermal Devices for Controlling Heat Transfer

The technology is a heat transfer device. The key properties are a unidirectional heat flow, thin, sandwich structure, and a T-dependent thermal resistance. The technology functions via the heat pipe effect. The purpose of the technology is to provide a one-way heat flow in a compact form (in a thin layer) with T-dependent thermal resistance.

Novel Processing Method for Group III-V Semiconductor Surfaces

A processing method for group III-V semiconductor surfaces prior to high-dielectric constant dielectric deposition by atomic layer deposition (ALD) or another deposition method. 

  • Go to Page: