Browse Category: Communications > Other

[Search within category]

Silent Speech Interface Using Manifold Decoding Of Biosignals

Researchers at the University of California, Davis have developed a technology that provides a novel method for decoding biosignals into speech, enhancing communication for individuals with speech impairments.

Improved Optical Atomic Clock In The Telecom Wavelength Range

Optical atomic clocks have taken a giant leap in recent years, with several experiments reaching uncertainties at the 10−18 level. The development of synchronized clock networks and transportable clocks that operate in extreme and distant environments would allow clocks based on different atomic standards or placed in separate locations to be compared. Such networks would enable relativistic geodesy, tests of fundamental physics, dark matter searches, and more. However, the leading neutral-atom optical clocks operate on wavelengths of 698 nm (Sr) and 578 nm (Yb). Light at these wavelengths is strongly attenuated in optical fibers, posing a challenge to long-distance time transfer. Those wavelengths are also inconvenient for constructing the ultrastable lasers that are an essential component of optical clocks. To address this problem, UC Berkeley researchers have developed a new, laser-cooled neutral atom optical atomic clock that operates in the telecommunication wavelength band. The leveraged atomic transitions are narrow and exhibit much smaller black body radiation shifts than those in alkaline earth atoms, as well as small quadratic Zeeman shifts. Furthermore, the transition wavelengths are in the low-loss S, C, and L-bands of fiber-optic telecommunication standards, allowing the clocks to be integrated with robust laser technology and optical amplifiers. Additionally, the researchers have identified magic trapping wavelengths via extensive studies and have proposed approaches to overcome magnetic dipole-dipole interactions. Together, these features support the development of fiber-linked terrestrial clock networks over continental distances.

Advanced Human Pose Recognition Technology

This technology revolutionizes human pose recognition by overcoming dataset and environmental limitations.

Next Generation Of Emergency System Based On Wireless Sensor Network

         Recent mass evacuation events, including the 2018 Camp Fire and 2023 Maui Fire, have demonstrated shortcomings in our communication abilities during natural disasters and emergencies. Individuals fleeing dangerous areas were unable to obtain fast or accurate information pertaining to open evacuation routes and faced traffic gridlocks, while nearby communities were unprepared for the emergent situation and influx of persons. Climate change is increasing the frequency, areas subject to, and risk-level associated with natural hazards, making effective communication channels that can operate when mobile network-based systems and electric distribution systems are compromised crucial.         To address this need UC Berkeley researchers have developed a mobile network-free communication system that can function during natural disasters and be adapted to most communication devices (mobile phones and laptops). The self-organized, mesh-based and low-power network is embedded into common infrastructure monitoring device nodes (e.g., pre-existing WSN, LoRa, and LPWAN devices) for effective local communication. Local communication contains dedicated Emergency Messaging and “walkie-talkie” functions, while higher level connectivity through robust gateway architecture and data transmission units allows for real-time network optimization, communication with nearby communities, and even global connectivity. The system can provide GPS-free position information using trilateration, which can help identify the location of nodes monitoring important environmental conditions or allowing users to navigate.

Telehealth-Mediated Physical Rehabilitation Systems and Methods

The use of telemedicine/telehealth increased substantially during the COVID-19 pandemic, leading to its accelerated development, utilization and acceptability. Telehealth momentum with patients, providers, and other stakeholders will likely continue, which will further promote its safe and evidence-based use. Improved healthcare by telehealth has also extended to musculoskeletal care. In a recent study looking at implementation of telehealth physical therapy in response to COVID-19, almost 95% of participants felt satisfied with the outcome they received from the telehealth physical therapy (PT) services, and over 90% expressed willingness to attend another telehealth session. While telehealth has enhanced accessibility by virtual patient visits, certain physical rehabilitation largely depends on physical facility and tools for evaluation and therapy. For example, limb kinematics in PT with respect to the shoulder joint is difficult to evaluate remotely, because the structure of the shoulder allows for tri-planar movement that cannot be estimated by simple single plane joint models. With the emergence of gaming technologies, such as videogames and virtual reality (VR), comes new potential tools for virtual-based physical rehabilitation protocols. Some research has shown digital game environments, and associated peripherals like immersive VR (iVR) headsets, can provide a powerful medium and motivator for physical exercise. And while low-cost motion tracking systems exist to match user movement in the real world to that in the virtual environment, challenges remain in bridging traditional PT tooling and telehealth-friendly physical rehabilitation.

(SD2019-414) MIMO synchronized large aperture Radar

 Researchers from UC San Diego developed Pointillism, a system that enables radars to overcome the challenges posed by specular reflections, sparsity and noise in the radar point clouds, to provide high-fidelity perception of the scene with 3D bounding boxes. Pointillism consists of multiple low-resolution radars placed in a optimal fashion to maximize the spatial diversity and scene information. Pointillism combines this spatial diversity with novel multi-radar fusion algorithms to tackle the problem of specular reflections, sparsity and noise in radar point clouds. Building upon the hardware and algorithms, Pointillism also introduces a novel data-driven approach that enables the detection of multiple dynamic objects in the scene, with their accurate location, orientation and 3D dimensions. Furthermore, Pointillism enables such perception even in inclement weather, thereby paving a way for radar to be the main-stream sensor for autonomous perception.

Flippo The Robo-Shoe-Fly: A Foot Dwelling Social Wearable Companion

Social interactions in school and office settings traditionally involve few coordinated physical interactions, and most group engagement centers on sharing electronic screens. Wearable robot companions are a promising new direction for encouraging coordinated physical movement and social interaction in group settings. A UC Santa Cruz researcher has developed a wearable social companion that encourages users to interact via physical movement.

Magneto-Optic Modulator

Brief description not available

Reducing Electrical Current Variations in Phase-Locked Loop Systems

Researchers at the University of California, Davis have developed a method of eliminating electrical current mismatches in the charge pumps of phase-locked loops (PLL) systems - thereby increasing their power efficiency and phase detection capabilities.

Systems and Methods for Sound-Enhanced Meeting Platforms

Computer-based, internet-connected, audio/video meeting platforms have become pervasive worldwide, especially since the 2020 emergence of the COVID-19 pandemic lockdown. These meeting platforms include Cisco Webex, Google Meet, GoTo, Microsoft Teams, and Zoom. However, those popular platforms are optimized for meetings in which all the participants are attending the meeting online, individually. Accordingly, those platforms have shortcomings when used for hybrid meetings in which some participants are attending together in-person and others attending online. Also, the existing platforms are problematic for large meetings in big rooms (e.g. classrooms) in which most or all of the participants are in-person. To address those suboptimal meet platform situations, researchers at UC Berkeley conceived systems, methods, algorithms and other software for a meeting platform that's optimized for hybrid meetings and large in-person meetings. The Berkeley meeting platform offers a user experience that's familiar to users of the conventional meeting platforms. Also, the Berkeley platform doesn't require any specialized participant hardware or specialized physical room infrastructure (beyond standard internet connectivity).

Embedded Power Amplifier

Researchers at the University of California, Davis have developed an amplifier technology that boosts power output in order to improve data transmission speeds for high-frequency communications.

Absorptive Microwave Bandpass Filters

Researchers at the University of California, Davis have developed absorptive bandpass filters that enable improved passband flatness and good impedance matching both in-band and out-of-band.

A Fully Integrated Stretchable Sensor Arrays for Wearable Sign Language Translation To Voice

UCLA researchers in the Department of Bioengineering have developed a novel machine learning assisted wearable sensor system for the direct translation of sign language into voice with high performance.

New And Integrated Method For Continuous Auditory Brain Stimulation

Various examples of delivering continuous auditory stimulation of various kinds (sometimes referred to by the term “entrainment”) have been proposed to modulate brainwaves for therapeutic effect. Current methods of delivering continuous auditory stimulation typically present noises (in the form of clicks, tones, pulses) embedded in music. By modulating the user’s existing audial environment to embed continuous auditory sound stimulation, this technology creates a more tolerable and user-friendly experience that enables prolonged therapeutic stimulation for such neurodegenerative disorders as Alzheimer’s, Parkinson’s and Chronic Traumatic Encephalopathy (CTE).

Vibration Sensing and Long-Distance Sounding with THz Waves

UCLA researchers in the Department of Electrical and Computer Engineering have developed a terahertz (THz) detector that utilizes the micro-Doppler effect to detect vibrations and long-distance sounds.

Decision Making Spike Time Dependent Plasticity (STDP) Based Neuronal Network Learning

Biologically inspired neural networks are capable of performing sophisticated information processing. Information processing by the brain is multilayered and involves many sequential steps before sensory information can be interpreted and translated into a behavior or action. What makes this cascade powerful is its ability to learn and respond to an ever changing environment based on patterns. Eventually, information gathered from the senses may reach decision centers (such as lateral intra parietal cortex) that govern behavior and are under the influence of reward signals. While a great deal of research has gone into understanding mechanisms of learning at the cellular level, there is still much to discover regarding how learning at the cellular level gives rise to learning on the level of animal behavior. One of the most promising mechanisms of synaptic change for learning is spike time dependent plasticity ("STDP").

Deep Learning Network and Compression Framework over Limited Bandwidth Network Links

Researchers at the University of California, Davis have developed a technology that enables the quantization of discrete wavelet transformed coefficients to reduce bandwidth for cloud-based storage applications. 

Compact Ion Gun for Ion Trap Surface Treatment in Quantum Information Processing Architectures

Electromagnetic noise from surfaces is one of the limiting factors for the performance of solid state and trapped ion quantum information processing architectures. This noise introduces gate errors and reduces the coherence time of the systems. Accordingly, there is great commercial interest in reducing the electromagnetic noise generated at the surface of these systems.Surface treatment using ion bombardment has shown to reduce electromagnetic surface noise by two orders of magnitude. In this procedure ions usually from noble gasses are accelerated towards the surface with energies of 300eV to 2keV. Until recently, commercial ion guns have been repurposed for surface cleaning. While these guns can supply the ion flux and energy required to prepare the surface with the desired quality, they are bulky and limit the laser access, making them incompatible with the requirements for ion trap quantum computing.To address this limitation, UC Berkeley researchers have developed an ion gun that enables in-situ surface treatment without sacrificing high optical access, enabling in situ use with a quantum information processor.

Energy Efficient and Scalable Reconfigurable All-to-All Switching Architecture

Researchers at the University of California, Davis have developed a hierarchical optical switch architecture that is low latency and energy efficient.

Multi-Wavelength, Laser Array

Researchers at the University of California, Davis have developed a multi-wavelength, laser array that generates more precise wavelengths than current technologies. The array also delivers narrow linewidths and can operate athermally.

Higher-Speed and More Energy-Efficient Signal Processing Platform for Neural Networks

Researchers at the University of California, Davis have developed a nanophotonic-based platform for signal processing and optical computing in algorithm-based neural networks that is faster and more energy-efficient than current technologies.

  • Go to Page: