Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Medical > Diagnostics

Categories

[Search within category]

New Non-Invasive Markers To Assess Efficacy Of Anti-Integrin Therapies

Inflammatory bowel disease is a chronic disease, which affects the lower bowel parts or the entire GI tract, causing symptoms like abdominal pain, diarrhea, fever and weight loss. An estimated two million people in North America suffer from IBD seemingly caused by an overactive mucosal immune system. Crohn’s Disease and ulcerative colitis (UC) are the major groups of inflammatory conditions that make up IBD and are incurable, serious and chronic organic diseases of the intestinal tract.   Recently, anti-integrin monoclonal antibodies have been approved by the FDA as therapeutic agents for treatment of IBD and there are a number of phase three clinical trials ongoing using monoclonal antibody therapy. The immune system responds to the inflammation that is part of the immunopathology of IBD and acts by recruiting inflammatory cells to the intestinal lesions.  Intergrins, specifically alpha 4-β7, plays a key role in mediating leukocyte trafficking from the circulation to the vascular endothelial barrier in gut-associate lymphoid tissue with the ligand MAdCAM-1. The use of anti-integrin therapy targeting alpha 4-β7 reduces the number of immune cells to the gut endothelium. However, the precise identity of the cell subsets depleted from the intestinal lamina by these anti-integrin drugs have not been identified. Thus, there is an unmet need to further develop tools that allow for the identification of the critical effector cell subsets targeted by these drugs in the intestine.

Development of Methods and Assay for Measurement of Total Oxidized Phospholipid (OxPL)

Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the United States. It can be broadly sub-classified into nonalcoholic fatty liver (NAFL), which is thought to have minimal risk of progression to cirrhosis, and nonalcoholic steatohepatitis (NASH), which is thought to have an increased risk of progression to cirrhosis. The current diagnostic gold standard for differentiating whether a patient with NAFLD has NAFL versus NASH is liver biopsy. However, liver biopsy is an invasive procedure, which is limited by sampling variability, cost, and may be complicated by morbidity and even death, although rare. Accurate, non-invasive, biomarkers for the detection of liver disease and liver disease progression e.g., progression to NASH, are currently also not available.

Monoclonal Antibodies Specific to Canine PD-1 and PD-L1

Researchers at the University of California, Davis have developed monoclonal antibodies with multiple applications relevant to canine PD-1 and PD-L1.

Imaging Modalities and Methods for Enhanced, Label-free Histopathology During Surgery

Researchers at the University of California, Davis have developed new techniques capable of producing near real-time tissue analysis with quality and accuracy attributes comparable to traditional Haemotoxylin and Eosin (H&E) histopathology methods.

Detecting Cardiovascular Disease Using Noninvasive Imaging of the Eye

Cardiovascular disease is the leading cause of mortality and disability worldwide. It is also prevalent, affecting 9% of the population over 20 years of age. Patients with cardiovascular risk factors can reduce their risk of developing catastrophic cardiovascular events such as heart attack and stroke through lifestyle modification and medications. Unfortunately for many, the disease may go undiagnosed until the occurrence of serious events. Identifying biomarkers of subclinical ischemia can help identify patients with occult cardiovascular disease.

Computational Image Analysis of Guided Acoustic Waves Enables Rheological Assessment of Sub-Nanoliter Volumes

UCLA researchers in the Department of Electrical and Computer Engineering have developed an image analysis platform to measure the viscosity of nanoliter volume liquids.

Blood Flow Velocimetry via Data Assimilation of Medical Imaging

Cardiovascular disease (CVD) is a tremendous burden on the population in terms of morbidity and mortality, as well as on the healthcare system in terms of cost. Various forms of CVD including atherosclerosis, valve and ventricular dysfunction, aneurysms, and thrombogenesis can be identified by measuring localized abnormalities in blood flow. Accordingly, the ability to noninvasively interrogate physiological flows enables identification and diagnosis of disease, monitoring of the effects of therapy, and research on the hemodynamic nature of CVD and its associated interventions. In the clinic, blood flow measurements are primarily made using phase contrast magnetic resonance imaging (PC-MRI) and ultrasonic color Doppler imaging. Certain limitations of these techniques for patients who have contraindications or suffer from arrhythmias, as well as the desire for volumetric flow information necessitate the development of a new modality for blood flow velocimetry.

Use of UBA7 and its Regulated Genes as Novel Biomarkers in Treating Human Cancers

Human Ubiquitin-like modifier-activating enzyme 7 (UBA7) is a protein is involved in protein modification, specifically involving the pathway for protein ubiquitination. The modification of proteins with ubiquitin is an important cellular mechanism for targeting abnormal or short-lived proteins for degradation. Ubiquitination involves at least three classes of enzymes: ubiquitin-activating enzymes, or E1s, ubiquitin-conjugating enzymes, or E2s, and ubiquitin-protein ligases, or E3s. UBA7  encodes a member of the E1 ubiquitin-activating enzyme family. Moreover, ubiquitination and ubiquitin-like post-translational modifications (PTMs) regulate activity and stability of oncoproteins and tumor suppressors. Biomarkers are very important as companion diagnostic tools to guide clinical practice in treating human cancers, especially for targeted therapies. In the era of precision medicine, it is important for development companion diagnostic tools that can guide clinical practice for treating human cancers using targeted therapies.

Multi-Sensing Intravascular Catheter to Prevent Heart Attack or Stroke

UCLA researchers in the Department of Medicine have developed a multi-functional catheter that combines different sensing capabilities to improve the detection of unstable plaques.

Breast Milk Biomarkers for Child Chronic Health Disorders

Autism Spectrum Disorder (ASD) is a developmental disorder associated with difficulties in social interaction and communication as well as repetitive behavior. ASD is thought to be the result of genetic and environmental factors that affect approximately 1 in 59 children in the US, and 25 million people worldwide. The current method of diagnosis for ASD involves evaluations and tests performed by a team of specialists.  The latest forms of diagnosis can detect ASD as early as 18 months. However, more standard methods take until 4 years of age before the diagnosis of ASD is confirmed. There remains an unmet need to develop a reliable and accurate diagnostic methods for early detection for a child at risk with chronic and/or developmental disorders, such as ASD, so that an early intervention measures will be applied before the first symptoms appear.

A Method to Measure Perceptual Thresholds

UCLA researchers in the Department of Psychology have developed a method to accurately measure a patient’s perceptual (visual, auditory, etc.) threshold unaffected by patient response bias.

Low-Cost Paper-Based Microfluidic Diagnostic Device

Prof. Mulchandani and his colleagues from the University of California, Riverside have developed a new paper-based microfluidic platform for the simple and low-cost fabrication of single-walled carbon nanotube (SWNT)-based chemiresistive nanobiosensor arrays for multianalyte sensing from a single small volume sample that may be used as point-of-care diagnostic for a variety of purposes, including healthcare, food safety, environment, etc. This device is created by utilizing a wax printer to construct well-defined hydrophobic barriers for equal splitting and delivery of fluid and an inkjet printer to fabricate chemiresistors using a water-based SWNT ink on a paper substrate. Currently, the quantitative and selective detection of both human serum albumin (HSA) and human immunoglobulin G (hIgG) simultaneously in urine has been demonstrated by UCR. This paper-based chemiresistive biosensor is easy to fabricate, and designed for cost-effective, rapid, sensitive and selective detection of  analyte(s) of interest. This technology provides a platform for automated, disposable paper-based point-of-care diagnostics with multiplexed detection capability and microfluidic controls. Fig 1: A 3D microfluidic multiplexed paper-based biosensor array device.

Shear Wave Based Elasticity Imaging Using 3D Segmentation For Ocular Disease Diagnosis

 Retinal diseases, such as age-related macular degeneration (AMD), are the leading cause of blindness in the elderly population. Since no known cures are currently present, it is crucial to diagnose the condition in its early stages so that disease progression is monitored. Systems and methods for detecting and mapping the mechanical elasticity of retinal layers in the posterior eye are disclosed herein. A system including confocal shear wave acoustic radiation force optical coherence elastography (SW-ARF-OCE) is provided, wherein an ultrasound transducer and an optical scan head are co-aligned to facilitate in-vivo study of the retina. In addition, an automatic segmentation algorithm is used to isolate tissue layers and analyze the shear wave propagation within the retinal tissue to estimate mechanical stress on the retina and detect early stages of retinal diseases based on the estimated mechanical stress. US patent application no.  20190335996 

A Tumorigenic Index to Determine Liver Cancer Initiation and Prognosis

The incidence and mortality of liver cancer, mainly hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC), are increasing rapidly worldwide. Diverse risk factors for primary liver cancer have been identified, including infection of hepatitis B virus (HBV) and hepatitis C virus (HCV), alcohol abuse and non-alcoholic steatohepatitis (NASH) as well as intake of aflatoxin B1. Consistent with the complex and multifactorial etiologies, multi-omics analyses of human HCC and ICC samples have identified vast genomic heterogeneity, molecular and cellular defects, metabolic reprogramming, and subtypes of tumors as well as altered tumor microenvironment in the liver. However, it remains to be determined if any common molecular signatures in the transcriptomes exist for liver cancer, despite their considerable genomic heterogeneity. Furthermore, little is known about the kinetics and fashions, either gradual accumulation or dramatic transition, in generation of cell-intrinsic and -extrinsic signals that are intertwined to drive malignant transformation of hepatocytes and tumor initiation.

Kelch Like Family Member 11 (Klhl11) Autoantibodies As Markers Of Seminoma Associated Paraneoplastic Encephalitis In Men

Researchers at UCSF and Chan Zuckerberg Biohub have discovered a novel biomarker for an autoimmune disease that affects patients with testicular cancer.  The disease, known as “testicular cancer-associated paraneoplastic encephalitis,” can cause severe neurological symptoms.  The symptoms include loss of limb control, eye movement, and in some cases, speech.  The disease begins with testicular cancer, which in some cases causes the immune system to attack the brain.  Affected patients are often misdiagnosed and appropriate treatment is delayed. 

Reacting Molecules and Colloids Electrophoretically

Researchers in UCLA's Department of Chemistry and Biochemistry have harnessed gel electrophoresis in order to direct and program controlled collisional reactions between pulse-like bands of molecules and/or colloidal reagent species.

A Wearable Platform for In-Situ Analysis of Hormones

UCLA researchers in the Department of Electrical and Computer Engineering have developed a highly sensitive, wearable hormone monitoring platform.

Techniques for Improving Positron Emission Tomography Image Quality and Tracking Real-Time Biological Processes

Researchers at the University of California, Davis have developed methodologies that perform dynamic PET imaging and provide opportunities for tracing blood flow and other biological systems in real-time.

Stamping-based Method for Microwell Production and Cell Aggregate Formation

Researchers at the University of California, Davis have developed a 3-D printed stamping system (the “Aggrestamp”) with the capability for in-situ production of microwells that facilitate cell aggregate formation.

Use of Machine Learning to Predict Non-Diagnostic Home Sleep Apnea Tests

Researchers led by Robert Stretch from the Division of Pulmonary, Critical Care & Sleep Medicine at UCLA have developed an algorithm that can predict whether a patient will have a non-diagnostic home sleep apnea test based upon data from the electronic health record and a brief questionnaire.

A Novel Device for the Measurement of the Strength of the Orbicularis Oculi Muscle

UCLA researchers in the Department of Ophthalmology have developed a novel device that measures the strength of the orbicularis oculi muscle.

Identification Of Pan-Cancer Small Cell Neuroendocrine Phenotypes And Vulnerabilities

UCLA researchers in the Department of Molecular and Medical Pharmacology have developed a classifier for the identification and treatment of small cell neuroendocrine cancers and small-round-blue cell tumors not previously identified.

Systems and Methods for Monodisperse Drop Generation and Use

UCLA researchers in the Department of Bioengineering have developed systems and methods to produce single particle, monodisperse droplets for use in digital assays, targeted drug delivery, and theranostics.

  • Go to Page: