Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Materials & Chemicals > Thin Films

Categories

[Search within category]

Selective Spin-On Deposition of Polymers

Brief description not available

Magnetochromatic Spheres

Brief description not available

Carbon Nanotube Infrared Detector

Brief description not available

Chromium Complexes Of Graphene

Brief description not available

Multimodal Coatings For Heat And Fire Resistance

Brief description not available

Superlattice, Ferroic Order Thin Films For Use As High/Negative-K Dielectric

With the two-dimensional scaling of silicon field-effect transistors reaching fundamental limits, new functional improvements to transistors, as well as novel computing paradigms and vertical device integration at the architecture-level, are currently under intense study. Gate oxides play a critical role in this endeavor, as it’s a common performance booster for all devices, including silicon, new channel materials with potential for higher performance, and even materials suitable for three-dimensional integrated transistors.With the scaling of lateral dimensions in advanced transistors, an increased gate capacitance is desirable both to retain the control of the gate electrode over the channel and to reduce the operating voltage. To pursue these performance gains, UC Berkeley researchers invented a new heterostructure insulator material where: 1) the material possesses specific ferroic order such as ferroelectricity/anti-ferroelectricity or a mixture of both; 2) the overall dielectric property such as the permittivity is determined by the stacking order of different layers rather than exact volume fraction of the constituents; and 3) the material is composed of one or several repetition of ultra thin superlattice periods ranging from a few angstroms to 3 nm.

Method for Producing Amphiphilic and Amphoteric Soy Protein Colloids, Sub-Micron Fibers, and Microfibrils

Researchers at the University of California, Davis have developed a method for converting high molecular weight and complex globular proteins such as soy and pea into amphiphilic and amphoteric colloids, sub-microns fibers, and microfibrils important to multiple consumer and industrial applications.

A Thin Film Nitinol Neurovascular Covered Stent For Small Vessel Aneurysms

UCLA researchers in the Department of Pediatrics have developed a thin and flexible stent that can be implanted in small vessels in the neurovascular system. Normal 0 false false false EN-US ZH-CN X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

A Phase-Changing Polymer Film for Broadband Smart Windows Applications

UCLA researchers in the Department of Materials Science and Engineering have developed an energy efficient smart window coating with wide light bandwidth and long cycle lifetimes.

Reticulation Of Macromolecules Into Crystalline Networks

Covalent organic frameworks (COFs) are 2D or 3D extended periodic networks assembled from symmetric, shape persistent molecular 5 building blocks through strong, directional bonds. Traditional COF growth strategies heavily rely on reversible condensation reactions that guide the reticulation toward a desired thermodynamic equilibrium structure. The requirement for dynamic error correction, however, limits the choice of building blocks and thus the associated mechanical and electronic properties imbued within the periodic lattice of the COF.   UC Berkeley researchers have demonstrated the growth of crystalline 2D COFs from a polydisperse macromolecule derived from single-layer graphene, bottom-up synthesized quasi one-dimensional (1D) graphene nanoribbons (GNRs). X-ray scattering and transmission electron microscopy revealed that 2D sheets of GNR-COFs self-assembled at a liquid-l quid interface stack parallel to the layer boundary and exhibit an orthotropic crystal packing. Liquid-phase exfoliation of multilayer GNR-COF crystals gave access to large area bilayer and trilayer cGNR-COF films. The functional integration of extended 1D materials into crystalline COFs greatly expands the structural complexity and the scope of mechanical and physical materials properties.

Material For Thermal Regulation

Researchers at UCI have developed a lightweight, flexible thermal material that, due to the extent that it is stretched, allows for tunable control of heat flow.

Microporous membranes for the separation of enantiomers

Current methods used to separate racemic compounds on a large scale have limitations in cost, energy efficiency, and discontinuous processing. UCI researchers have synthesized a membrane made of chiral porous polymers that can separate enantiomers from racemic mixtures through continuous processing.

Fabrication of Relaxed Semiconductor Films without Crystal Defects

A technique for making relaxed InGaN layers without crystal defects.

Multiple-absorbers offer increased solar conversion efficiencies for artificial photosynthesis

   Researchers at UCI have, for the first time, developed a method for modeling the efficiencies of artificial photosynthetic devices containing multiple light absorbers. As these devices more closely parallel naturally occurring photosynthesis, they offer higher performance than standard single-absorber devices.

Controlling Magnetization Using Patterned Electrodes on Piezoelectrics

UCLA researchers in the Department of Materials Science and Engineering have developed a novel piezoelectric thin film that can control magnetic properties of individual magnetic islands.

Robust, Ultra-Flexible, Micro-Encoded Ferromagnetic Tape for Bioseparation and Assembly

Researchers at the UCLA Department of Bioengineering have developed methods to embed electroplated magnetic materials within elastomeric materials and use these flexible magnetic hybrid materials for biological applications.

Highly Efficient Perovskite/Cu(In, Ga)Se2 Tandem Solar Cell

UCLA researchers in the Department of Materials Science and Engineering have developed Perovskite/Cu(In, Ga)Se2 (PVSK/CIGS) tandem photovoltaic devices with ~22% efficiency.

Controlled Homo-Epitaxial Growth Of Hybrid Halide Crystals

Organic-inorganic hybrid perovskites have demonstrated tremendous potential for next-generation electronic and optoelectronic devices due to their remarkable carrier dynamics. However, current studies of electronic and optoelectronic devices have been focused on polycrystalline materials, due to the challenges in synthesizing device compatible high quality single crystalline materials.

Photo-induced Metal Printing Technique for Creating Metal Patterns and Structures Under Room Temperature

UCLA researchers in the Department of Materials Science and Engineering have developed a low-temperature metal patterning technique.

An Implantable Electrocorticogram (ECoG)-Brain-Computer Interface System for Restoring Lower Extremity Movement and Sensation

A fully implantable brain-computer interface (BCI) with onboard processing to control a robotic gait exoskeleton as a walking aid for individuals with chronic spinal cord injury (SCI). This technology would alleviate SCI patient’s dependence on wheel chairs, reducing the risk of secondary medical complications that account for an estimated $50 billion/year in healthcare costs.

  • Go to Page: