Browse Category: Materials & Chemicals > Thin Films

[Search within category]

Methods for Forming Composites with 2D Structures

Currently, thin films of single-crystalline (SC) alloy material are obtained using costly SC substrates made of a material chemically and physically compatible to that of a SC thin film that is deposited on the SC substrate. Formation of SC thin films of alloy materials on SC substrates are typically achieved through fairly expensive processes such as epitaxy. As a result, the use of a thin film of SC alloy materials or respective multiple thin films is contingent upon the availability of an appropriate SC substrate thereby severely limiting its utilization. Thus, there is a need for alternative methods of forming one or more thin films of SC alloy materials on arbitrary substrates. Crystallization of thin film materials by exploiting laser-induced crystallization has been advancing for the past four decades. This unique thin film technique has been predominantly used in processing thin film materials made of a single chemical element, with a significant emphasis on thin film materials comprised of a single chemical element like silicon (Si), used for the development of thin film transistors. While this approach has worked well for thin film materials comprised of a single chemical element like silicon (Si) it is not easily extended for use with thin film materials containing multiple chemical elements (e.g., metal oxides). For certain bulk manufacturing applications, it would be desirable to efficiently form thin structures on non-single-crystalline (NSC) substrates, such as glass, or on SC substrates that are highly-incompatible, such as silicon. For such applications, it is highly desirable that the treated SC alloy layer(s) have chemical compositions not significantly different from those of their original chemical compositions.

Continuous Polyhydroxyalkanoate Production By Perchlorate Respiring Microorganisms

Plastics are essential for the modern world but are also non-sustainable products of the petrochemical industry that negatively impact our health, environment, and food chain. Natural biogenic plastics, such as polyhydroxyalkanoates (PHA), are readily biodegradable, can be produced more sustainably, and offer an attractive alternative. The global demand for bioplastics is increasing with the 2019 market value of $8.3B expected to reach a compound annual growth rate of 16.1% from 2020-2027 (https://www.grandviewresearch.com/industry-analysis/bioplastics-industry). However, current PHA production is constrained by the underlying physiology of the microorganisms which produce them, meaning bioplastic production is currently limited to inefficient, batch fermentation processes that are difficult to scale.To address this problem, UC Berkeley researchers have developed a new system for PHA production wherein the PHA are generated continuously throughout microorganism growth lifecycles. The invention allows these sustainable bioplastics to be produced via precision continuous fermentation technology, a scalable and efficient approach.

Scalable Temperature Adaptive Radiative Coating With Optimized Solar Absorption

For decades, researchers have been developing “cool roof” materials to cool buildings and save on energy usage from air conditioning. Cool roof materials are engineered to maximize infrared thermal emission, allowing heat to be effectively radiated into outer space and the building to cool down. Conventional cool roof materials emit heat even when it is cold outside, which exacerbates space heating costs and can outweigh energy-saving benefits. A temperature adaptive radiative coating (TARC) material was developed in 2021 that adapts its thermal emittance to ambient temperatures using metal-insulator transitions in vanadium oxide. TARC is projected to outperform existing roof materials in most climate areas, but the complicated structure required high-cost fabrication techniques such as photolithography, pulsed laser deposition, and XeF2 etching, which are not scalable.To address this problem, UC Berkeley researchers have developed a new scalable temperature-adaptive radiative coating (STARC). STARC has the same thermal emittance switching capability as TARC, allowing the thermal emittance to be switched between high- and low- emittance states at a preset temperature. However, STARC can be produced using high-throughput, roll-to-roll methods and low-cost materials. The STARC material also has an improved lifetime. As an added benefit, while cool roof materials are often engineered with uniformly low solar-absorption, the color and solar absorption of STARC can be tuned for aesthetic purposes or to meet local climate-specific needs.

Selective Spin-On Deposition of Polymers

Brief description not available

Magnetochromatic Spheres

Brief description not available

Carbon Nanotube Infrared Detector

Brief description not available

Chromium Complexes Of Graphene

Brief description not available

Multimodal Coatings For Heat And Fire Resistance

Brief description not available

Superlattice, Ferroic Order Thin Films For Use As High/Negative-K Dielectric

With the two-dimensional scaling of silicon field-effect transistors reaching fundamental limits, new functional improvements to transistors, as well as novel computing paradigms and vertical device integration at the architecture-level, are currently under intense study. Gate oxides play a critical role in this endeavor, as it’s a common performance booster for all devices, including silicon, new channel materials with potential for higher performance, and even materials suitable for three-dimensional integrated transistors.With the scaling of lateral dimensions in advanced transistors, an increased gate capacitance is desirable both to retain the control of the gate electrode over the channel and to reduce the operating voltage. To pursue these performance gains, UC Berkeley researchers invented a new heterostructure insulator material where: 1) the material possesses specific ferroic order such as ferroelectricity/anti-ferroelectricity or a mixture of both; 2) the overall dielectric property such as the permittivity is determined by the stacking order of different layers rather than exact volume fraction of the constituents; and 3) the material is composed of one or several repetition of ultra thin superlattice periods ranging from a few angstroms to 3 nm.

Method for Producing Amphiphilic and Amphoteric Soy Protein Colloids, Sub-Micron Fibers, and Microfibrils

Researchers at the University of California, Davis have developed a method for converting high molecular weight and complex globular proteins such as soy and pea into amphiphilic and amphoteric colloids, sub-microns fibers, and microfibrils important to multiple consumer and industrial applications.

Surface Sensitization For High-Resolution Thermal Imaging

This invention is a structured product comprising at least two layers comprising a first layer and a second layer.  The first layer comprises at least one material having a temperature-dependent (e.g., a positive temperature-dependent or negative temperature-dependent) wavelength-integrated emissivity (ε); the second layer comprises at least one reflective material that is reflective to light in an IR spectrum, for example, in an 8-14 μm wavelength range; and the structured product has a positive temperature dependent wavelength-integrated emissivity.

A Thin Film Nitinol Neurovascular Covered Stent For Small Vessel Aneurysms

UCLA researchers in the Department of Pediatrics have developed a thin and flexible stent that can be implanted in small vessels in the neurovascular system. Normal 0 false false false EN-US ZH-CN X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

A Phase-Changing Polymer Film for Broadband Smart Windows Applications

UCLA researchers in the Department of Materials Science and Engineering have developed an energy efficient smart window coating with wide light bandwidth and long cycle lifetimes.

Reticulation Of Macromolecules Into Crystalline Networks

Covalent organic frameworks (COFs) are 2D or 3D extended periodic networks assembled from symmetric, shape persistent molecular 5 building blocks through strong, directional bonds. Traditional COF growth strategies heavily rely on reversible condensation reactions that guide the reticulation toward a desired thermodynamic equilibrium structure. The requirement for dynamic error correction, however, limits the choice of building blocks and thus the associated mechanical and electronic properties imbued within the periodic lattice of the COF.   UC Berkeley researchers have demonstrated the growth of crystalline 2D COFs from a polydisperse macromolecule derived from single-layer graphene, bottom-up synthesized quasi one-dimensional (1D) graphene nanoribbons (GNRs). X-ray scattering and transmission electron microscopy revealed that 2D sheets of GNR-COFs self-assembled at a liquid-l quid interface stack parallel to the layer boundary and exhibit an orthotropic crystal packing. Liquid-phase exfoliation of multilayer GNR-COF crystals gave access to large area bilayer and trilayer cGNR-COF films. The functional integration of extended 1D materials into crystalline COFs greatly expands the structural complexity and the scope of mechanical and physical materials properties.

Microporous membranes for the separation of enantiomers

Current methods used to separate racemic compounds on a large scale have limitations in cost, energy efficiency, and discontinuous processing. UCI researchers have synthesized a membrane made of chiral porous polymers that can separate enantiomers from racemic mixtures through continuous processing.

Multiple-absorbers offer increased solar conversion efficiencies for artificial photosynthesis

   Researchers at UCI have, for the first time, developed a method for modeling the efficiencies of artificial photosynthetic devices containing multiple light absorbers. As these devices more closely parallel naturally occurring photosynthesis, they offer higher performance than standard single-absorber devices.

Controlling Magnetization Using Patterned Electrodes on Piezoelectrics

UCLA researchers in the Department of Materials Science and Engineering have developed a novel piezoelectric thin film that can control magnetic properties of individual magnetic islands.

Robust, Ultra-Flexible, Micro-Encoded Ferromagnetic Tape for Bioseparation and Assembly

Researchers at the UCLA Department of Bioengineering have developed methods to embed electroplated magnetic materials within elastomeric materials and use these flexible magnetic hybrid materials for biological applications.

Controlled Homo-Epitaxial Growth Of Hybrid Halide Crystals

Organic-inorganic hybrid perovskites have demonstrated tremendous potential for next-generation electronic and optoelectronic devices due to their remarkable carrier dynamics. However, current studies of electronic and optoelectronic devices have been focused on polycrystalline materials, due to the challenges in synthesizing device compatible high quality single crystalline materials.

Photo-induced Metal Printing Technique for Creating Metal Patterns and Structures Under Room Temperature

UCLA researchers in the Department of Materials Science and Engineering have developed a low-temperature metal patterning technique.

  • Go to Page: