Browse Category: Materials & Chemicals > Storage

[Search within category]

Resonant Distance Spectroscopic Scanning Probe Microscopy

      State-of-the-art scanning probe microscopy (SPM) systems, including microwave impedance microscopy (MIM) and near-field scanning microscopy (NSOM), typically operate in a dynamic, non-contact “tapping” mode. Lock-in detection at the probe cantilever’s resonant mechanical oscillation frequency mitigates effects of drift and achieves high measurement sensitivity of local material characteristics. Electrical, mechanical, or other material properties can be measured down to the nanoscale. However, a full time-domain tip-sample response would yield a much richer data set. Unfortunately, existing methodologies require moving the entire scan head to sweep the tip-sample separation at rates far below the resonant frequency of the cantilever or tuning fork—yielding slow scan speeds and outputs vulnerable to drift, 1/f noise, and stray coupling.       To overcome these challenges, UC Berkeley researchers have leveraged high-speed data acquisition, wideband detection electronics, and modern real-time computing to acquire hyperspectral datasets at twice the mechanical resonant frequency of the probe. The invention captures up to hundreds of thousands of curves per second, without sacrificing scan speed, resolution, or stability. It can be straightforwardly integrated on most commercial SPM platforms, and for a wide range of resonantly driven probes, including cantilevers, quartz tuning forks, and qPlus sensor. Among other benefits, the technique enables novel post-processing capabilities, including retrospective enhancement of spatial resolution.

Nonlinear Microwave Impedance Microscopy

      Microwave impedance microscopy (MIM) is an emerging scanning probe technique that enables non-contact, nanoscale measurement of local complex permittivity. By integrating an ultrasensitive, phase-resolved microwave sensor with a near-field probe, MIM has made significant contributions to diverse fundamental and applied fields. These include strongly correlated and topological materials, two-dimensional and biological systems, as well as semiconductor, acoustic, and MEMS devices. Concurrently, notable progress has been made in refining the MIM technique itself and broadening its capabilities. However, existing literature has focused exclusively on linear MIM based on homodyne architectures, where reflected or transmitted microwave is demodulated and detected at the incident frequency. As such, linear MIM lacks the ability to probe local electrical nonlinearity, which is widely present, for example, in dielectrics, semiconductors, and superconductors. Elucidating such nonlinearity with nanoscale spatial resolution would provide critical insights into semiconductor processing and diagnostics as well as fundamental phenomena like local symmetry breaking and phase separation.       To address this shortcoming, UC Berkeley researchers have introduced a novel methodology and apparatus for performing multi-harmonic MIM to locally probe electrical nonlinearities at the nanoscale. The technique achieves unprecedented spatial and spectral resolution in characterizing complex materials. It encompasses both hardware configurations enabling multi-harmonic data acquisition and the theoretical and calibration protocols to transform raw signals into accurate measures of intrinsic nonlinear permittivity and conductivity. The advance extends existing linear MIM into the nonlinear domain, providing a powerful, versatile, and minimally invasive tool for semiconductor diagnostics, materials research, and device development.

Droplet Hotspot Cooling Due To Thermotaxis

      Effective thermal management remains a critical challenge in designing and operating next-generation electronics, data centers, and energy systems. Devices are steadily shrinking and handling increased power densities. Traditional cooling strategies, such as heat sinks and immersive cooling systems, fall short in delivering the targeted, localized cooling needed to prevent or address thermal hotspots. Current solutions for localized hotspot cooling require active, energy-intensive methods like pumping of coolants and complex thermal architecture design.       To overcome these challenges, UC Berkeley researchers present a transformative passive method for localized, autonomous cooling of hotspots. The cooling system delivers effective, localized cooling across various device surfaces and geometries, including those geometries wherein cooling media must move against gravity. The benefits of the present system will be appreciated for computer chip and other electronics cooling, microgravity applications, battery thermal management. Beyond thermal management, the underlying system may also open novel avenues in fluid manipulation and energy harvesting.

A sustainable and scalable bioinspired material with tunable heat-managing properties

Researchers at UC Irvine have developed a sustainable and low-cost insulation material with the ability to dynamically manage heat exchange. This technology circumvents the limitations of previous thermal management systems by offering low-cost manufacturing, straightforward implementation, energy efficiency, and control of heat exchange.

Reconfigurable Soft Li-Ion Battery

The invention is flexible/stretchable soft battery for devices that seamlessly integrate for human-machine interface applications.  Such reconfigurable and soft batteries will play an important role as power sources can take up a large space in a system. To this end, the conformable/stretchable batteries of the embodiments provide an ideal power sources for these devices. Wearable devices attract lots of interest with a market share of over $116.2 billion/year, projected to be $265.4 billion by 2026

Design For Nesting Height Adjustable Workbenches

Need to transport sturdy adjustable workbenches for use at sea or other temporary work spaces that need anchoring to walls or floors and you can't find a commercially available source?

Ambient-Pressure Regeneration Of Degraded Lithium-Ion Battery Cathodes Via Eutectic Solutions

Lithium‐ion batteries (LIBs) are currently the dominant power sources for portable electronics and electric vehicles, both of which have rapidly growing markets. Recycling and re‐use of end‐of‐life LIBs, to reclaim lithium and transition metal resources and eliminate pollution from disposal of waste batteries, have become urgent tasks. Great effort has been made to recycle LIB cathode materials. State‐of‐the‐art approaches include pyrometallurgy, hydrometallurgy, and direct recycling. The pyrometallurgical approach requires high temperature smelting as well as multi-step purification and separation processes; the hydrometallurgical approach requires acid leaching and subsequent complicated precipitation steps to produce precursors for the re-synthesis of new cathode materials. Both approaches have to totally destroy the LIB cathode particles which represent a significant amount of value from their primary manufacturing process. The direct recycling approach combines physical separation to harvest the cathode materials with high-pressure relithiation to regenerate cathode materials, where the high pressure process greatly increases the cost of regeneration.

Thermodynamic Integration Simulation Method for Filling Molecular Enclosures Using Spliced Soft-Core Interaction Potential

Researchers have developed a simulation method to determine the properties of molecular enclosures based on slow growth thermodynamic integration (SGTI).

Ceramic And Metallic Cellular Structures Wtih Interconnected Microchannels

UCLA researchers in the Department of Mechanical Engineering have developed cellular porous metallic and ceramic structures that can be used to increase the production and recovery of tritium for fusion power reactors or as a support for electrode materials.

A Method Of Making Carbon Coated Oxides As High-Performance Anode Materials

UCLA researchers in the Department of Materials Science and Engineering have developed a carbon-coated silicon nanoparticle-based electrode material for lithium-ion batteries with high energy density and long lifetime.  They have also developed a scalable fabrication method for this material.

3D Magnetic Topological Structures for Information Storage

Researchers at the University of California, Davis, have developed a new way to directly create 3-dimensional topological magnetic structures that allows for efficient information storage with potentially low energy dissipation.

Process For Electrodepositing Manganeese Oxide With Improved Rate Capabilities For Electrical Energy Storage

The invention is a novel method for enhancing the energy, power and performance of lithium ion batteries. It applies a new process for electrodepositing Manganese Oxide in a way that improves the electrical properties as well as the rate at which the battery can operate. Using this method, the energy storage capabilities is boosted significantly; making it faster, more reliable and enabling various applications to become more dependent on electric/battery solutions.

Novel Metal Chalcogenides For Pseudocapacitive Applications

UCLA researchers in the Department of Chemistry and Biochemistry have developed a novel metal chalcogenides for pseudocapacitive applications. 

Enhanced Cycle Lifetime With Gel Electrolyte For Mn02 Nanowire Capacitors

The invention is novel way of preparing electrodes for nanowire-based batteries and capacitors with extremely long cycle lifetimes. The proposed assemblies last much longer than any comparable state of the art nanowire energy storage device, without loss of performance, and are comparable to liquid electrolyte-based technologies in terms of their figures of merit.

Nanoporous Tin Powder For Energy Applications

UCLA researchers in the Department of Chemistry and Biochemistry have developed a method of synthesizing micrometer tin particles with nanosporous architecture and have successfully demonstrated the use of these particles as a high energy density anode for Na-ion and Li-ion batteries. 

Making Nanostructured Porous Hollow Spheres with Tunable Structure

UCLA researchers in the Department of Chemical Engineering have developed a novel method of preparing inorganic nanospheres with porous hollow interiors.

Highly Complex MOFs and Methods of Making Same

Metal-organic frameworks (MOFs) are porous crystalline nano-materials that are constructed by linking metal clusters called Secondary Building Units (SBUs) and organic linking ligands. This case provides MOFs which comprise a plurality of SBUs comprising different metals or metal ions and/or a plurality of organic linking moieties comprising different functional groups.

Magnetic and Electrical Control of Magnetic Films

Controlling the magnetic properties of ferromagnetic (FM) layers without magnetic fields is an on-going challenge in condensed matter science with multiple technological implications. External stimuli (e.g., light, electric field) and proximity effects (e.g., materials susceptible to external driving forces) are the most used methods to control the magnetic properties. An interesting possibility along these lines is offered by ferromagnets in proximity to materials that undergo metal-insulator (MIT) and structural phase transition (SPT). SPT and MIT are usually driven by temperature but they may also be driven by current, light and pressure.   Thus, if the magnetism of the FM is affected by the proximity to materials that undergo MIT, then tuning the magnetic properties by multiple stimuli may become possible.

Magnetically Controlled Casting Process

Brief description not available

  • Go to Page: