Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Medical > Research Tools

Categories

[Search within category]

Development of Highly Sensitive Excitation Ratiometric Indicators of Cellular Phosphorylation

Protein phosphorylation is one of the most common forms of post-translational modification and is involved in the regulation of key signaling pathways in the cell. Dysfunctional phosphorylation plays a key role in various diseases, especially cancer and neurodegenerative disorders. Protein kinases have been the focus of intense recent interest by the pharmaceutical industry. Indeed, most new cancer drugs approved by the FDA in the last several years target kinases, and there are hundreds of new kinase inhibitors under development.  To this end, it is very important to have quantitative methods for measuring changes in kinase activities.  In vitro kinase activity assays take the target molecules out of cellular contexts. Fluorescent protein-based kinase biosensors have enabled the real-time monitoring of kinase activities within the native context of living cells, yet most commonly used biosensors exhibit poor sensitivity (e.g., dynamic range) for imaging physiological signaling activities in situ.

Nano Biosensing System

Metabolites can provide real-time information about the state of a person’s health. Devices that can detect metabolites are commercially available, but are unable to detect very low concentrations of metabolites. Researchers at UCI have developed surfaces that use nanosensors to detect much lower concentrations of such metabolites.

Pain Assessment Method And Apparatus For Patients Unable To Self Report Pain

Though pain assessment is a crucial part of many medical treatment plans, most physicians rely on patients self-reporting their own pain levels. This self-reporting strategy may be convenient to some patients trying to determine whether the patient should get to a doctor, but in some situations, especially where a patient is non-communicative or incapacitated, these patients may be unable to clearly express themselves to a medical professional. As such, researchers at UCI have developed a novel device that automatically and objectively monitors a patient’s pain levels by tracking/monitoring subconscious facial movements in real-time.

Simultaneous pH- And Oxygen-Weighted MRI Contrast Using Multi-Echo Chemical Exchange Saturation Transfer Imaging (ME-CEST)

UCLA researchers in the Department of Radiological Sciences have developed a magnetic resonance imaging (MRI) technique that simultaneously acquires acidic and hypoxic information often associated with brain tumors and traumatic brain injury (TBI).

Inhibition Of Stress Granule Formation Through Manipulation Of UBAP2L

Stress granule (SG) formation has been suggested as a two-step process, with initial formation of a dense stable SG ‘‘core’’ followed by accumulation of proteins containing intrinsically disordered regions (IDRs) and low-complexity domains (LCDs) into a peripheral ‘‘shell’’ through a process involving liquid-liquid phase separation (LLPS). Recently, SGs have been associated with human neurodegenerative disorders characterized by the presence of toxic insoluble protein aggregates. This link is most compelling in the case of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), where numerous disease-causing mutations are purported to interfere with LLPS-dependent growth and dynamics of SGs.

Method to Develop a Stable Pluripotent Bovine Embryonic Stem Cell Line

Researchers at the University of California, Davis have developed a method to produce stable pluripotent bovine embryonic stem cells.

Membrane Insertion of Potential Sensing Nanorods

UCLA researchers in the Department of Chemistry have developed inorganic semiconductor nanosensors that measure membrane voltage.

Histology Thin Sectioning Method for Soft, Unfixed Tissues

Before microscopic analysis, tissue specimens are typically prepared for sectioning by initial fixation, freezing, and/or embedding in a mounting medium. There have been no cutting blocks for vibratome that allow the use of fresh soft tissues into thin slices (with micrometer thickness) such as intestines and other soft tissues (brain, heart, blood vessels, liver, spleen, lung, skin etc.).These traditional techniques can limit the ability of scientists to carry out molecular analysis on the tissue.

Using DNA Methylation Markers To Predict Clinically Important Traits In Mammals

UCLA researchers in the Department of Molecular, Cell, and Developmental Biology have found association of DNA methylation with metabolic syndrome traits in human adipose tissue samples using epigenome-wide association studies (EWAS).

Bioorthogonal Ligation Mediated Rare-Cell Capture in Microfluidic Devices

Researchers at the UCLA Department of Molecular and Medical Pharmacology have developed a novel NanoVelcro microfluidic chip that is capable of not only effectively enriching circulating tumor cells (CTCs) but also quickly recovering CTCs with well-preserved mRNA and minimal level of white blood cell contamination.

Cross-Linked Fluorescent Supramolecular Nanoparticles as Finite Tattoo Pigments with Controllable Intradermal Retention Times

UCLA researchers in the Department of Molecular and Medical Pharmacology have developed a new type of fluorescent dermal pigment.

Guided Magnetic Nanospears For Targeted And High-Throughput Intracellular Delivery

UCLA researchers in the Department of Chemistry & Biochemistry and Department of Molecular & Medical Pharmacology have developed novel magnetic nanostructures that can be used to carry and/or deliver biomolecular cargo intracellularly to cells.

Airway Manikin With Realistic Mobility

Training for direct laryngoscopy relies heavily on practice with patients. The necessity for human practice might be supplanted to some extent by an intubation manikin with accurate airway anatomy, a realistic “feel” during laryngoscopy, the capacity to model many patient configurations, and a means to provide feedback to trainees and instructors. The realism and mobility of the anatomical features of current models limits the effectiveness of training intubation skills. Current models provide only one set of anatomic features, but patients present innumerable combinations of size, shape, proportion, and tissue stiffness. Thus, a novice who trains on a particular model merely learns how to intubate that particular model, but has minimal ability to transfer the learned skills to the multiplicity of anatomies in patients. Furthermore, most models approximate a normal anatomic configuration that poses no problem for intubation, so novices do not gain experience with difficult situations

Microfluidic Interfacial Magnetic Separation (MIMS)

UCLA researchers in the Department of Medicine and Bioengineering have developed a novel magnetic method for sorting cells.

Electrochemical Flash Fluorination and Radiofluorination

Researchers led by Saman Sadeghi from the Department of Molecular & Medical Pharmacology at UCLA have developed a new and simple process to make fluorinated organic compounds.

A Simple Integrated Device For Assessing Lung Health

Chronic lung diseases, like asthma, impose critical challenges on both the patients and the physicians due to the complexity of the diseases. Not only are these diseases tough to accurately assess, many of the diseases can be impacted by other physical and sociological factors. Perhaps a greater difficulty lies in measuring the effectiveness and compliance of the medications including inhaled medications. The invention discovered at the University of California, Irvine, is an “all-in-one,” portable device that offers complete assessment of lung health. It also incorporates a novel technology for monitoring the effectiveness and compliance of a medication, thereby, providing a personalized treatment and care plan for adults and children with asthma.

Physical Multi-Layer Arm Phantom For Body Area Networks

Researchers at UCI have developed an oil-based in vitro phantom that accurately mimics the electrical properties of the human arm. Due to the increased accuracy it affords, this phantom can be used to test the efficiencies of wireless medical devices in body area networks.

In vivo optical biopsy applicator of the vaginal wall for treatment planning, monitoring, and imaging guided therapy

Pelvic floor disorders (PFDs) afflict nearly 25% of all women and carry a host of symptoms that can drastically reduce quality of life. Despite their prevalence, the complex and varied nature of such PFDs make them difficult to diagnose and treat. Researchers at UCI have developed an entirely integrated system that, for the first time, provides real-time monitoring of the vaginal wall tissue during diagnosis and treatment, allowing for more thorough diagnoses and more effective treatment methods.

System and Methods for Efficient Collection of Single Cells and Colonies of Cells and Fast Generation of Stable Transfectants

A plate manufactured to enable samples of cells, microorganisms, proteins, DNA, biomolecules, transfectants, and other biological media to be positioned at specific sites. Some or all of the sites are built from removable material so that samples may be isolated.

Efficient Library Preparation for CRISPR Pooled Single-Guide RNAs Screens

There is great interest in both academic and commercial labs in performing pooled CRISPR screens for a variety of purposes, including identifying drug resistance and delivery mechanisms, genes essential for survival, death and disease phenotypes, differentiation, regulation of gene expression, and various other mechanisms.

Joint Pharmacophoric Space through Geometric Features

Pharmacophore analysis through examination of Joint Pharmacophore Space of chemical compounds, targets, and chemical/biological properties.

Multi-Echo Spin-, Asymmetric Spin-, And Gradient Echo Echoplanar Imaging (Message-EPI) MRI

UCLA researchers in the Department of Radiological Sciences have developed a new MRI pulse sequence optimized for brain imaging.

Biomarkers Based On Molecular Composition Of Cells

UCLA researchers in the Department of Materials Science and Engineering have developed a novel biomarker based on spectroscopic analysis of proteins in cell membranes.

Antisense Oligonucleotide Therapy for B Cell Mediated Cancers

Researchers at the University of California, Davis have developed a targeted therapy using an antisense oligonucleotide (ASO) to treat precursor B cell (pre-B) acute lymphoblastic leukemia (ALL).

Automatic Personal Daily Activity Tracking

Researchers at UCI have developed an entirely unobtrusive method for chronicling and analyzing an individual’s daily activities over time, which relies on tracking user activity via their smartphone. This technology has important applications in health and behavior monitoring, where it can be used to signal the early stages of various diseases and disorders.

  • Go to Page: