Browse Category: Medical > Research Tools

[Search within category]

Automated Critical Congenital Heart Disease Screening Combining Non-Invasive Measurements of Oxygenation and Perfusion

Researchers at the University of California, Davis have developed a computer-implemented method for accurately classifying congenital heart defects in newborns using pulse oximetry and machine learning.

Biological Force-Responsive Chromogenicity of Polymeric Hydrogels

A mechanically adaptive hydrogel that changes color in response to force exerted by living cells, enabling force sensing through optical signals.

Light-Processed Hydrogel Systems For Delivering Spatial Patterning Cues To Tissue Engineered Systems

A novel 3D bioprintable hydrogel platform enables precise spatial delivery of biochemical gradients to engineer in vitro tissue models with area-specific identities.

A Quantitative, Multimodal Wearable Bioelectronic For Comprehensive Stress Assessment And Sub-Classification

A multimodal, wireless wearable device enabling continuous and detailed stress assessment and subclassification.

Techniques For Predicting Immunization Responses

Brief description not available

Spectral Flow Of Organoids

Brief description not available

Methods Of Treating Stat1 Dependent Cancer

Brief description not available

CAPTaINs: Capped And Protected Targeted Immunoproteasome N-End Degrons

CAPTaINs provide a novel, selective, and stable method for selective degradation of protein targets.

Selective Addition Of Reagents To Droplets

Brief description not available

Reusable, Sterilizable Surgical Instruments for Deployment of Neuropixels Probes in the Operating Room

Researchers at the University of California, Davis have developed a system of reusable, sterilizable 3D-printed surgical tools that enables safe, precise intraoperative deployment of Neuropixels probes within standard neurosurgical workflows.

A Novel High-Resolution EEG Signal Acquisition System With A Unique EEG Cap Array

A breakthrough one-wire EEG cap with embedded electrode chips provides ultra-sensitive, noise-immune, wide-band brain signal acquisition. It enables non-invasive, real-time, high-resolution recording using dry electrodes, ideal for wearable and clinical neuro-technology applications.

  • Go to Page: