Browse Category: Medical > Research Tools

[Search within category]

Selective Manipulation of Magnetically Barcoded Materials

This technology enables precise, selective manipulation of magnetically barcoded materials, distinguishing them from background magnetic materials

In-Incubator, Servo-Controlled Microvalve System for Automated Culture Management

Advances in biological research have been greatly influenced by the development of organoids, a specialized form of 3D cell culture. Created from pluripotent stem cells, organoids are effective in vitro models in replicating the structure and progression of organ development, providing an exceptional tool for studying the complexities of biology. Among these, cerebral cortex organoids (hereafter "organoid") have become particularly instrumental in providing valuable insights into brain formation, function, and pathology. Despite their potential, organoid experiments present several challenges. Organoids require a rigorous, months-long developmental process, demanding substantial resources and meticulous care to yield valuable data on aspects of biology such as neural unit electrophysiology, cytoarchitecture, and transcriptional regulation. Traditionally the data has been difficult to collect on a more frequent and consistent basis, which limits the breadth and depth of modern organoid biology. Generating and measuring organoids depend on media manipulations, imaging, and electrophysiological measurements. Historically are labor- and skill-intensive processes which can increase risks associated with experimental validity, reliability, efficiency, and scalability.

Software Tool for Generating Optimized Gene Sequences

A cornerstone of bacterial molecular biology is the ability to genetically manipulate the microbe under study. Manipulating the genomes of bacteria is critical to many fields. Such manipulations are made by genetic engineering, which often requires new pieces of DNA to be added to the genome. It is often difficult to move genes into a recalcitrant destination organism due to surveillance systems (CRISPR, Restriction Modification) of the destination/host which degrade invading DNA . It may be commercially desirable to evade these systems in the destination organism. However, evading these systems may require significant experimental effort to design and implement.

Depletion and Replacement of Brain Border Myeloid Cells

A novel method for selectively targeting and modulating brain border-associated myeloid cells for the treatment of neurological disorders.

Engineered TNA Polymerase for Therapeutic Applications

An engineered polymerase enabling the synthesis of threose nucleic acid (TNA) for advanced therapeutic applications.

XNA Aptamer Particle Display Technology

An innovative mid-throughput technique for screening and optimizing threose nucleic acid (TNA) aptamers for protein-binding activity.

Neuronal Cell Classification System and Methods

Advances in biological research have been greatly influenced by the development of organoids, a specialized form of 3D cell culture. Created from pluripotent stem cells, organoids are effective in vitro models in replicating the structure and progression of brain development, providing an exceptional tool for studying the complexities of biology. Among these, cortical organoids, comprising in part of neurons, have been instrumental in providing early insights into brain formation, function, and pathology. Functional characteristics of cortical organoids, such as cellular morphology and electrophysiology, provide physiological insight into cellular states and are crucial for understanding the roles of cell types within their specific niches. And while progress has been made studying engineered neuronal systems, decoding the functional properties of neuronal networks and their role in producing behaviors depends in part on recognizing neuronal cell types, their general locations within the brain, and how they connect.

Advanced Photodetector System and Methods

X-radiation (X-ray) imaging is one of the most common imaging techniques in medicine. Presently, thin-film transistor flat panel detectors are the gold standard for X-ray detection; however, these detectors average across the absorbed X-ray spectrum and thus suffer from poor material decomposition and lesion differentiation. Modern efforts to address this focus on three methods of energy differentiation: dual-shot, photon counting, and dual-layer detectors. Dual-shot detection utilizes a single detector to image a patient with two shots of X-rays at low and high energies. While this has been shown to effectively differentiate between soft and hard tissues, (e.g., chest radiography) this results in a higher dose level to the patient and motion artifacts from slight movement between images. Photon counting detectors offer an alternative to multiple shots, providing high spatial resolution, low dose, and multiple energy binning with photon weighting. However, these detectors also require more complex circuit design for fast readout, have limited material options with great enough yield and detective quantum efficiency at low to mid energy ranges, and are limited in detective area. Dual-layer detectors that stack two detector layers to each process low and high energy X-rays remove motion artifacts by utilizing a single shot of polyenergetic X-rays. These most commonly employ two indirect detectors separated by a Cu filtering layer, which photon-starves the second higher energy detector. Unfortunately, this also requires a higher X-ray intensity, resulting in a higher dose level to the patient.

Organoid Training System and Methods

Advances in biological research have been greatly influenced by the development of organoids, a specialized form of 3D cell culture. Created from pluripotent stem cells, organoids are effective in vitro models in replicating the structure and progression of organ development, providing an exceptional tool for studying the complexities of biology. Among these, cerebral cortex organoids (hereafter "organoid") have become particularly instrumental in providing valuable insights into brain formation, function, and pathology. Modern methods of interfacing with organoids involve any combination of encoding information, decoding information, or perturbing the underlying dynamics through various timescales of plasticity. Our knowledge of biological learning rules has not yet translated to reliable methods for consistently training neural tissue in goal-directed ways. In vivo training methods commonly exploit principles of reinforcement learning and Hebbian learning to modify biological networks. However, in vitro training has not seen comparable success, and often cannot utilize the underlying, multi-regional circuits enabling dopaminergic learning. Successfully harnessing in vitro learning methods and systems could uniquely reveal fundamental mesoscale processing and learning principles. This may have profound implications, from developing targeted stimulation protocols for therapeutic interventions to creating energy-efficient bio-electronic systems.

Modern Organoid Research Platform System and Methods

Advances in biological research have been greatly influenced by the development of organoids, a specialized form of 3D cell culture. Created from pluripotent stem cells, organoids are effective in vitro models in replicating the structure and progression of organ development, providing an exceptional tool for studying the complexities of biology. Among these, cerebral cortex organoids (hereafter “organoid”) have become particularly instrumental in providing valuable insights into brain formation, function, and pathology. Despite their potential, organoid experiments present several challenges. Organoids require a rigorous, months-long developmental process, demanding substantial resources and meticulous care to yield valuable data on aspects of biology such as neural unit electrophysiology, cytoarchitecture, and transcriptional regulation. Traditionally the data has been difficult to collect on a more frequent and consistent basis, which limits the breadth and depth of modern organoid biology. Generating and measuring organoids depend on media manipulations, imaging, and electrophysiological measurements. Historically these are labor- and skill-intensive processes which can increase risks associated with known human error and contamination.

Auto Single Respiratory Gate by Deep Data Driven Gating for PET

In PET imaging, patient motion, such as respiratory and cardiac motion, are a major source of blurring and motion artifacts. Researchers at the University of California, Davis have developed a technology designed to enhance PET imaging resolution without the need for external devices by effectively mitigating these artifacts

Isolation and Preservation of Extracellular Vesicles with EXO-PEG-TR

A groundbreaking method for the efficient isolation and preservation of high-purity small extracellular vesicles (sEVs - exosomes) from biofluids using a novel EXO-PEG-TR reagent.

BMSO: A Novel Sulfoxide-Containing Cleavable Cysteine Crosslinker

BMSO represents a groundbreaking advancement in crosslinking mass spectrometry (XL-MS), enabling comprehensive mapping of protein-protein interactions.

Imaging The Surfaces Of Optically Transparent Materials

A breakthrough imaging technique that provides high-resolution visualization of optically transparent materials at a low cost.

Cross-Linkers to Advance Protein-Protein Interaction Studies

A novel suite of trioxane-based, MS-cleavable cross-linking reagents enhancing protein-protein interaction studies.

Artificial Intelligence Enabled, Automated Electronic Surgical Education Models And Radiographic Data Generation

An AI-powered platform for the generation of automated electronic patient anatomy education models, providing surgeons with clinically relevant patient anatomy data.

Generating Neural Signals From Human Behavior By Neurocognitive Variational Autoencoders

An innovative algorithm linking electroencephalogram (EEG) neural data with cognitive model parameters to predict brain signals from behavioral data.

Newborn Biomarkers of Cumulative Autism Risk Factors

Researchers at the University of California, Davis have identified DNA methylation biomarkers in placenta, as well as maternal and newborn blood, allowing early autism diagnosis and risk assessment.

Compositions and Methods for Identifying Functional Nucleic Acid Delivery Vehicles

Lipid Nanoparticles (LNPs) are a leading platform for nucleic acid delivery, widely used in therapeutics and vaccine development. However, the process of optimizing new LNP formulations has been significantly hindered by labor-intensive and costly screening methods, which require individual injections into animal models. Given the vast array of potential lipid compositions and formulation variables, these constraints severely impede the efficiency of research and development.To overcome these challenges, UC Berkeley researchers have developed a novel approach for identifying and characterizing functional nucleic acid delivery vehicles. This innovative method leverages circular RNA barcoding technology, enabling a more efficient screening process. Instead of relying on conventional cell sorting techniques, which restrict screening to specific organs and host species, this breakthrough allows direct detection of barcoded nucleic acids within circular RNAs in treated cells. By analyzing the barcodes detected, researchers can accurately determine which lipid compositions and formulations successfully delivered RNA molecules.  This technology represents a significant advancement in LNP research, offering a scalable, cost-effective solution that enhances the precision and scope of nucleic acid delivery screening.

Genetic Polymorphisms Linked to Age-Related Eye Disorders and Drug Response

Researchers at UC Irvine have identified genetic polymorphisms associated with disease progression and responsiveness to treatment with Tetracosapentaenoic acid (24:5 n-3) for age-related eye disorders such as age-related macular degeneration (AMD), diabetic retinopathy and glaucoma. These variations found in the ELOVL2 gene are associated with AMD progression and the varying responses individuals have to AMD treatments, including preventative measures. Additionally, these genetic variations have applications in human identification.

ANTISENSE OLIGONUCLEOTIDES TARGETING INFLUENZA A

Influenza A virus (IAV) poses an ever-evolving threat due to its high mutation rate and ability to reassort, leading to new viral variants that evade existing vaccines and treatments. Historically responsible for devastating global pandemics, including the infamous Spanish Flu, and currently fueling concerns with the spread of highly pathogenic Avian Influenza (HPAI H5N1), IAV remains a pressing global health challenge.UC Berkeley researchers have developed an Antisense Oligonucleotides (ASO) therapy that is an next-gen approach to combating influenza by modulating IAV activity at its genetic level. Unlike traditional antivirals or seasonal vaccines that struggle to keep up with mutating strains, this ASOs therapy targets the ultra-conserved U12 region within the IAV RNA genome, offering broad-spectrum efficacy against even the most elusive influenza strains.  

Real-Time Antibody Therapeutics Monitoring On An Implantable Living Pharmacy

      Biologics are antibodies produced by genetically engineered cells and are widely used in therapeutic applications. Examples include pembrolizumab (Keytruda) and atezolizumab (Tecentriq), both employed in cancer immunotherapy as checkpoint inhibitors to restore T- cell immune responses against tumor cells. These biologics are produced by engineered cells in bioreactors in a process that is highly sensitive to the bioreactor environment, making it essential to integrate process analytical technologies (PAT) for closed-loop, real-time adjustments. Recent trends have focused on leveraging integrated circuit (IC) solutions for system miniaturization and enhanced functionality, for example enabling a single IC that monitors O2, pH, oxidation-reduction potential (ORP), temperature, and glucose levels. However, no current technology can directly and continuously quantify the concentration and quality of the produced biologics in real-time within the bioreactor. Such critical measurements still rely on off-line methods such as immunoassays and mass spectrometry, which are time-consuming and not suitable for real- time process control.       UC Berkeley researchers have developed a microsystem for real-time, in-vivo monitoring of antibody therapeutics using structure-switching aptamers by employing an integrator-based readout front-end. This approach effectively addresses the challenge of a 100× reduction in signal levels compared to the measurement of small-molecule drugs in prior works. The microsystem is also uniquely suited to the emerging paradigm of “living pharmacies.” In living pharmacies, drug-producing cells will be hosted on implantable devices, and real-time monitoring of drug production/diffusion rates based on an individual’s pharmokinetics will be crucial.

One-step Packaged Multi-mode CMOS Bio-analyzer for Point-of-Care

      Current clinical practice for detecting low-concentration molecular biomarkers requires sending samples to centralized labs, leading to high costs and delays. Successful point-of-care (POC) diagnostic technology exist, such as the paper-based lateral-flow assay (LFA) used for pregnancy tests and SARS-CoV-2 rapid antigen tests, or miniaturized instruments such as the Abbot i-Stat Alinity. However, the former provides binary results or limited quantitative accuracy, and the latter is too expensive for in-home deployment. A promising approach for POC diagnostics, offering tailored circuit optimization, multiplexed detection, and significant cost and size reductions, is millimeter-sized CMOS integrated circuits coupled with microfluidics. Recent demonstrations include protein, DNA/RNA, and cell detection. The current complexity of system packaging (e.g., wire/flip-chip bonding) makes integrating microfluidics with more sophisticated functions challenging, and often-required syringe pumps and tubing are operationally unfriendly, limiting current approaches.       UC Berkeley researchers have developed a fully integrated, multi-mode POC device that requires single-step assembly and operates autonomously. Drawing inspiration from RFID technology and implantables, they have introduced inductively-coupled wireless powering and communication functionality into a CMOS bio-analyzer. With the chip being fully wireless, the die can be easily integrated into a substrate carrier, achieving a completely flat surface that allows for seamless bonding with the microfluidic module. In the final product, the device will be sealed in a pouch inside a vacuum desiccator. The user tears the pouch, adds a drop of sample, and the system automatically begins operation. The operation window can last up to 40 minutes, making the process insensitive to time delays. The present CMOS bio-analyzer integrates pH-sensing and amperometric readout circuits for both proton-based and redox-based immunoassays.

Cephalopod-Inspired Cellular Engineering

This technology introduces a novel method for dynamically tuning the optical properties of living cells by expressing cephalopod proteins.

Stem Cell Derived Placenta-On-A-Chip

This technology offers a groundbreaking approach to mimic human placental development and study pregnancy-related complications in vitro.

  • Go to Page: