Browse Category:

Categories

[Search within category]

Novel Metal Chalcogenides For Pseudocapacitive Applications

UCLA researchers in the Department of Chemistry and Biochemistry have developed a novel metal chalcogenides for pseudocapacitive applications. 

Enhanced Cycle Lifetime With Gel Electrolyte For Mn02 Nanowire Capacitors

The invention is novel way of preparing electrodes for nanowire-based batteries and capacitors with extremely long cycle lifetimes. The proposed assemblies last much longer than any comparable state of the art nanowire energy storage device, without loss of performance, and are comparable to liquid electrolyte-based technologies in terms of their figures of merit.

An Aza-Diels-Alder Approach To Polyquinolines

The invention is a simple and inexpensive synthetic approach to a diverse library of new polymeric materials with a host of useful and unique properties. Most notably, these materials can serve as precursors to rationally designed and bottom-up synthesized graphene nanoribbons (GNRs), including N-doped GNRs and GNRs with precisely defined and functionalized edges.

Graphen Layer Formation On A Carbon Based Substrate

Background: Plastics are cheap, durable, light-weight and have a wide range of practical applications. Despite its universality, plastic materials suffer from low thermal conductivity that limits them from many other uses. Graphene has many remarkable properties, that in conjunction with other materials, can enhance their functionality and usage in various market segments. The graphene market is projected to reach $200M by 2026. Brief Description: UCR researchers have developed a novel system and method for forming graphene layers on a substrate. The system allows for direct growth of graphene on diamonds and low temperature growth of graphene using a carbon source. Due to the various novel features of the system, one can make the most of graphene’s excellent intrinsic thermal conductivity by substantially improving the radio frequency characteristics. Thermal conductivity can be strengthened by adjusting the size and alignment of the graphene flakes. 

Cell Membrane-cloaked Nanofibers Promote Cell Proliferation and Function

Cloaking of synthetic structures with natural cell membranes has emerged as an intriguing strategy for presenting natural cell surface antigens and functions in the context of synthetic compositions with designed functions. Early forays into the field focused primarily on the development of cell membrane-coated spherical nanoparticles. While a boon to material sciences, such spherical structures cannot address the full spectrum of potential applications and the application of cell membrane cloaking techniques to nanofibers enables drastically different characteristics and applications.

Nanoporous Tin Powder For Energy Applications

UCLA researchers in the Department of Chemistry and Biochemistry have developed a method of synthesizing micrometer tin particles with nanosporous architecture and have successfully demonstrated the use of these particles as a high energy density anode for Na-ion and Li-ion batteries. 

Low-variability, Self-assembled Monolayer Doping Methods

Semiconductor materials are fundamental materials in all modern electronic devices. Continuous demand for faster and more energy-efficient electronics is pushing miniaturization and scaling to unprecedented levels. Controlled and uniform doping of semiconductor materials with atomic accuracy is critical to materials and device performance. In particular, junction depth and dopant concentration need to be tightly controlled to minimize contact resistance, as well as variability effects due to random dopant fluctuations in the channel. Conventional doping methods such as ion implantation is imprecise and can have large variability effect. Moreover, energetic introduction of dopant species will often cause crystal damage, leading to incompatibility with nanostructured-materials and further performance degradation. To address these problems, researchers at the University of California, Berkeley, have experimented with an alternative approach to a wafer-scale surface doping technique first developed at the UC Berkeley in 2007. The team has demonstrated a controlled approach for monolayer doping (MLD) in which gas phase dopant-containing molecules form low-variability, self-assembled monolayers (SAM) on target semiconductor surfaces.

A New Methodology For 3D Nanoprinting

Researchers at the University of California, Davis have discovered a novel protocol to enable 3D printing with nanometer precision in all three dimensions using polyelectrolyte (PE) inks and atomic force microscopy.

Pyrite Shrink-Wrap Laminate As A Hydroxyl Radical Generator

The invention is a diagnostic technology, as well as a research and development tool. It is a simple, easy to operate, and effective platform for the analysis of pharmaceuticals and biological species. Specifically, this platform generates hydroxyl radicals for oxidative footprinting – a technique commonly employed in protein mapping and analysis. The platform itself is inexpenisve to fabricate, scalable, and requires nothing more than an ordinary pipet to use. In addition, it is highly amenable to scale-up, multiplexing, and automation, and so it holds promise as a high-throughput method for mapping protein structure in support of product development, validation, and regulatory approval in the protein-based therapeutics industry.

X-Ray-Triggered Release of Drugs from Nanoscale Drug Carriers

Researchers at the University of California, Davis have identified a means by which large quantities of inactive drugs (particularly chemotherapeutics) can be delivered by nanoscale drug carriers to a target location where they can be rendered active by X-rays.

UCLA Inventors Create Platform Technology to Create Customizable Nanoscale Particles and Gels for Use in the Industrial Biomaterials Market

UCLA researchers in the Departments of Chemistry, Physics, and Bioengineering, led by Dr. Tim Deming of the Bioengineering department, have developed a platform to create and modify nanoscale particles and gels for use in the industrial biomaterials market. The polypeptide based delivery vehicle platforms created by the Deming group are customizable in nearly all physical characteristics, can be tailored in size, loaded with hydrophobic and hydrophilic payloads, used in coatings, are fully synthetic, possess highly reproducible properties, and are inexpensive to prepare compared to solid-phase peptide synthesis.The platform can be used to create novel, need-based nanoscale vesicles or injectable hydrogels, and can also be used to augment existing materials systems.

UCLA Inventors Create Platform Technology to Create Customizable Nanoscale Wound Management Tools

UCLA researchers in the Departments of Chemistry, Physics, and Bioengineering, led by Dr. Tim Deming of the Bioengineering department, have developed a platform to create and modify nanoscale vesicles and hydrogels for use in wound management. The poly-peptide based platforms created by the Deming group are customizable in nearly all physical characteristics, can be tailored in size, be loaded with hydrophobic, hydrophilic, or cellular payloads, adaptable to specific delivery locations, low toxicity, are fully synthetic, possess highly reproducible properties, and are inexpensive to prepare compared to solid-phase peptide synthesis. The platform can be used to create novel, need-based nanoscale vesicles or injectable hydrogels, and can be used to augment existing material systems.

UCLA Inventors Create Platform Technology to Create Customizable Nanoscale Particles and Gels for Use in the Industrial Biomaterials Market

UCLA researchers in the Departments of Chemistry, Physics, and Bioengineering, led by Dr. Tim Deming of the Bioengineering department, have developed a platform to create and modify nanoscale particles and gels for use in the industrial biomaterials market. The polypeptide based delivery vehicle platforms created by the Deming group are customizable in nearly all physical characteristics, can be tailored in size, loaded with hydrophobic and hydrophilic payloads, used in coatings, are fully synthetic, possess highly reproducible properties, and are inexpensive to prepare compared to solid-phase peptide synthesis.The platform can be used to create novel, need-based nanoscale vesicles or injectable hydrogels, and can also be used to augment existing materials systems.

UCLA Inventors Create Platform Technology to Create Customizable Nanoscale Drug Delivery Materials

UCLA researchers in the Departments of Chemistry, Physics, and Bioengineering, led by Dr. Tim Deming of the Bioengineering department, have developed a platform to create and modify nanoscale drug delivery particles. The poly-peptide based platforms created by the Deming group are customizable in nearly all physical characteristics, can be tailored in size, loaded with hydrophobic and hydrophilic payloads, adaptable to specific delivery locations, low toxicity, are fully synthetic, possess highly reproducible properties, and are inexpensive to prepare compared to solid-phase peptide synthesis.The platform can be used to create novel, need-based nanoscale vesicles or injectable hydrogels, and can also be used to augment existing nanoparticle systems.

UCLA Inventors Create Platform Technology to Create Customizable Materials for Imaging and Detection

UCLA researchers in the Departments of Chemistry, Physics, and Bioengineering, led by Dr. Tim Deming of the Bioengineering department, have developed a platform to create and modify nanoscale vesicles and hydrogels for use in imaging and detection.The poly-peptide based platforms created by the Deming group are customizable in nearly all physical characteristics, can be tailored in size, be loaded with hydrophobic and hydrophilic payloads, adaptable to specific delivery locations, low toxicity, are fully synthetic, possess highly reproducible properties, and are inexpensive to prepare compared to solid-phase peptide synthesis.The platform can be used to create novel, need-based nanoscale vesicles or injectable hydrogels, and can also be used to augment existing nanoparticles.

High Performance Thin Films from Solution Processible Two-Dimensional Nanoplates

UCLA researchers in the departments of Chemistry and Materials Science have recently developed a novel material for use in flexible, printed electronics.

Fast Micro- or Nano-scale Resolution Printing Methods and Apparatus

Fast, affordable three-dimensional printing or 3D manufacturing at micron or nano-scale is a holy grail for many high-tech industries. Current state of the art has generally been limited to smallest feature sizes in the 5-10 micron range, with metal-based 3D printer systems held at 100 microns. Another problem is 3D printers are limited to polymer media or require large laser sources. To address these issues, researchers at the University of California, Berkeley, have developed methods and devices to efficiently deposit desirable constituent materials (e.g. metallic, semiconducting, insulating, etc.) with precise micron and nano-scale resolution and without expensive laser requirements. These methods show promise in terms of fast sub-5 micron print speeds, material versatility, and structure sophistication. This is an entirely new fabrication tool, which is unencumbered by the limitations of existing 3D print-like functions, paving the way to arbitrary 2D and 3D nanoscale structures and devices that cannot be fabricated in any other way.

Hybrid Molecule Nanocrystal Photon Upconversion

Background: Solar resources are at a premium and the solar energy industry is a $130B market with growth projects of 30%. High demands for attaining renewable energy efficiently and cost-effectively, along with government incentives, are all good indicators for finding innovative ways to optimize solar energy systems.  Brief Description: Traditional semiconducting materials, i.e. silicon and cadmium telluride are unable to absorb all wavelengths of light and become usable energy. UCR researchers were able to functionalize semiconducting nanocrystals that are very efficient in upconverting near infrared photons into higher energy photons. They have optimized upconversion through carefully formulated combinations of semiconductor nanocrystals and organic ligands to enhance upconversion emission by up to 3 orders of magnitude relative to nanocrystals alone. This provides a way to enhance the efficiency of photovoltaic cells and reduce solar electricity costs.

Robust Superhydrophobic Coating for Aluminum Surfaces

This robust superhydrophobic coating is coated on aluminum surfaces by simple, low-cost chemical method. This coating demonstrates excellent hydrophobicity and enhances droplet shedding. By repelling water, it inhibits bacterial growth in heat exchanger fins surfaces. At the same time, with enhanced condensation, it greatly enhances overall heat transfer in air-side heat exchangers.

Piezoelectric Nanoparticle-Polymer Composite Foams

Mechanically flexible piezoelectric materials are highly sought after when building advanced sensors, actuators, and energy scavenger devices. The most common piezoelectric materials used in applications are focused on electroceramic thin films made from lead zirconate titanate or barium titanate. Although these materials can have large piezoelectric moduli, as thin films they are extremely brittle and difficult to shape into highly mechanically compliant structures. Improving mechanical flexibility of piezoelectrics, and creating higher order structures, is critical for driving new applications such as biological energy harvesting, compact acoustic transducers, and in vivo biodiagnostics.  There is a need to develop alternative materials that offer high piezoelectric coefficients while maintaining elasticity and isotropic mechanical integrity—that are also cheap to produce.

Process for the Fabrication of Nanostrucured Arrays on Flexible Polymer Films

The technology is a process for making arrays of nanostructures on polymer films.It features a two step process for creating thin polymer films with unique optical and wetting properties that can be used for coating both planar and curved surfaces.It is possible to implement this process in a mass fabrication process over large areas.

Novel Quantum Dot Field-Effect Transistors Free of the Bias-Stress Effect

Novel quantum dot field-effect transistors without bias-stress effect that also have high mobility and are environmentally stable.

Molecular vibrational resonance

Modification of scanning probe microscope for direct measurement of both, amplitude and phase of vibration of a single molecule.

Self-Assembled Modified Beta Solenoid Protein Scaffolds for Devices And Materials

Available for licensing are patent rights in novel and versatile beta solenoid proteins that are useful as scaffolds for nanoparticle assembly, photocatalytic devices, thermoelectric devices, passive absorption of small atoms or molecules, cement additive, heavy element remediation, heavy element absorption, and as biological catalysts.

  • Go to Page: