Browse Category: Medical > Research Tools

Categories

[Search within category]

Microchambers With Solid-State Phosphorescent Sensor For Measuring Single Mitochondrial Respiration

The invention is a miniaturized device that assays the respiration of a single mitochondrion. Through a novel approach for measuring oxygen consumption rate, the device provides information on cell and tissue mitochondrial functional. This data is relevant for understanding human conditions associated with mitochondrial dysfunction, such as Alzheimer’s Disease and cancer.

Neutralization Of Oxidation Specific Epitopes To Promote Skeletal Bone Growth

Phospholipids are very abundant molecules in the cell, particularly in regard to the role they play in building blocks for membranes, lipoproteins and extracellular vesicles. They are also intimately involved in cellular signaling and other processes when they undergo oxidation to form various degradation products via a process called lipid peroxidation. These newly generated products are often highly reactive and can form neo-epitopes, designated oxidation-specific epitopes (OSEs). OSEs, including oxidized phospholipids (OxPLs) and malondialdehyde (MDA)-modified amino groups and found on the surface of many cells and can be recognized by the immune system. MDA can be subject to degradation by reactive oxygen species, which can further react with acetaldehyde and endogenous proteins, forming malondialdehyde-acetaldehyde (MAA) adducts. These MAA adducts are immunogenic and have pro-inflammatory properties. Furthermore, circulating levels of antibodies against MAA adducts have been shown to correlate with atherosclerotic disease and implicated in a number of other diseases.

Novel Method to Identify Unknown Viruses

Prof. Shou-wei Ding and colleagues at UCR have developed a new method for virus discovery that is independent of either amplification or purification of viral particles. Virus-derived siRNAs and piRNAs are produced by the host immune system as an antiviral response to viral infection. These viral siRNAs and piRNAs are overlapping in sequence and can be assembled back into long continuous fragments of the infecting viral RNA genome. A researcher may sequence the total small RNAs of 18 to 29 nucleotides in length in a disease sample and search a public database of viral sequences using the contiguous sequences assembled from the small RNAs to identify a new or known virus with homology to all or part of a known viral genome in the database.

Somatic loss of Mgat1 as a potential risk factor for Multiple Sclerosis (MS)

Researchers at UCI report the incidence of somatic mutation/ loss in a human gene to increase the risk of some types of Multiple Sclerosis (MS).

Genetically Encoded Fluorescent Sensors for Probing the Action of G-Protein Coupled Receptors (GPCRs)

Researchers at the University of California, Davis have developed a genetically encoded fluorescent sensor toolbox for the probing of G-protein coupled receptors.

Culturing More Mature iPSC-derived Cardiac Myocytes

Researchers at the University of California, Davis have developed a non-genetic, non-pharmacological method for culturing more mature induced pluripotent stem cell-derived cardiac myocytes.

Wireless Implantable System To Restore Memory

UCLA researchers have developed a wireless implantable deep brain stimulation system to restore memory in individuals with traumatic brain injury.

Small Molecule Generation of Multinucleated and Striated Myofibers from Human Pluripotent Stem Cells Equivalent to Adult Skeletal Muscle

Researchers in the UCLA Department of Microbiology, Immunology and Molecular Genetics have developed a novel means of generating adult skeletal muscle-equivalent myofibers from human pluripotent stem cells.

DNA Amplification by Electric Field Cycling (efc-PCR)

Polymerase Chain Reaction (PCR) is a popular technique for amplifying and quantifying minute quantities of DNA. Technologies based on PCR are used for a wide range of applications, including forensics, disease detection, and laboratory tools. Researchers at UCI have developed a device that can implement a novel method for PCR based on voltage cycling as opposed to temperature cycling (the current method for PCR). This allows the device to be much more portable and compact than those currently available.

Stimuli Responsive Immunostimulants

An immune response typically occurs during inflammation, auto-immune diseases, or cancers. In such cases, chemical triggers, or immunostimulants, recognized by receptor proteins at cell membranes activate the immune cells. Researchers can use these immunostimulants to test how different cell subsets contribute to immune response mechanisms. This invention describes a novel type of immunostimulant that can be toggled on and off, both inside the body and in vitro.

Novel Solid Tumor Chemodrug LLS2

Researchers at the University of California, Davis have developed a new library of small molecule LLS2 that can kill a variety of cancer cells

Antibodies targeting mammalian Sterol Regulatory Element Binding Proteins (SREBP) 1 and 2

Sterol Regulatory Element Binding Proteins (SREBP) are important factors that control lipid homeostasis in mammals. Researchers at UCI have prepared antibodies that have good affinity and specificity for human SREBP1/2 for use as research tools. These antibodies have application in genetic and immunotherapeutic research areas.

New Method to Increase the Rate of Protein Ligation Catalyzed by the S. Aureus Sortase A Enzyme

UCLA researchers in the Department of Chemistry and Biochemistry have developed a new method to increase the rate of ligation catalyzed by the S. aureus Sortase A enzyme

A Novel Method of Controlling Synaptic Plasticity via Pulse Gating

Researchers at the University of California, Davis have developed a new method of selectively turning learning (synapse modification or synaptic plasticity) on or off in a neuromorphic circuit by using appropriately timed gating pulses. This method may be used in concert with synaptic plasticity to control learning (synaptic strength modification) in neuromorphic circuits and other neurally-inspired systems.

Enhanced Cell/Bead Encapsulation Via Acoustic Focusing

The invention consists of a multi-channel, droplet-generating microfluidic device with a strategically placed feature. The feature vibrates in order to counteract particle-trapping micro-vortices formed in the device. Counteracting these vortices allows for single particle encapsulation in the droplets formed by the device and makes this technology a good candidate for use in single cell diagnostics and drug delivery systems.

Novel Contrast Enhancement for Detection of Amyloid Beta Peptides using MRI, EPR, PET, and ESRM

Researchers at the University of California, Davis have developed nitroxide-coupled amyloid agents to produce contrast enhancement for amyloid beta peptide (Abeta) detection using MRI, EPR, PET, and ESRM.

Chiral Polymers Of Intrinsic Microporosity For Membrane Separation Of Enantiomers

Many pharmaceutical drugs exist as enantiomeric pairs, chemically-distinct mirror image of one another that often exhibit marked differences in biological activity. Current methods for separating enantiomeric mixtures to generate pure form of an effective drug involve multiple time-consuming and expensive steps. The invention herein describes a polymer that can selectively separate enantiomers in a simple, continuous process.

microfluidic device for preparation of monodisperse microcapsules and microvesicles

Many applications, ranging from in vivo cell culture growth to drug delivery, rely on microcapsules to encapsulate and protect cells or molecules until their desired release. These microcapsules are typically generated in immiscible fluid, which must be depleted before they can be effectively used. Researchers at UCI have recently developed a paper-based microcapsule extraction technique that is quicker, cheaper, and less damaging than conventional methods.

Identification Of A Factor That Promotes Human Hematopoietic Stem Cell Self-Renewal

The Mikkola group at UCLA has discovered a novel regulator of hematopoietic stem cell self-renewal. The overexpression of this regulator increases the yield of ex vivo stem cell expansion and could thereby improve the efficiency of stem cell therapies. 

SIMPLE AND RAPID METHOD FOR QUANTIFICATION OF HALOGINATED DISACCHARIDES, SUCH AS SUCRALOSE, IN AQUEOUS MEDIA

Sucralose has become widely used as an artificial sweetener due in large part that it has low caloric content and is 600 times sweeter than table sugar (sucrose). Due to its resistance to metabolic degradation, sucralose can also be used as a marker for noninvasively assessing gastrointestinal small intestine or colonic permeability. This urinary marker is traditionally analyzed by time consuming and expensive methods, such as high performance liquid chromatography coupled to mass spectrometry or evaporative light scatter as the detectors. We have developed an alternative methodology of using a chemical-fluorescent technique for rapid analysis of halogenated disaccharides, such as sucralose.

CARDIAC TISSUE MODELS AND METHODS OF USE THEREOF

96 Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Calibri; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} Tissue engineering approaches have the potential to increase the physiologic relevance of human iPS-derived cells, such as cardiomyocytes (iPS-CM). However, forming Engineered Heart Muscle (EHM) typically requires >1 million cells per tissue. Existing miniaturization strategies involve complex approaches not amenable to mass production, limiting the ability to use EHM for iPS-based disease modeling and drug screening. Micro-scale cardiospheres are easily produced, but do not facilitate assembly of elongated muscle or direct force measurements.   UC Berkeley researchers have developed a 3D filamentous fiber matrix that combines features of EHM and cardiospheres: Micro-Heart Muscle (μHM) arrays, in which elongated muscle fibers are formed in an easily fabricated template, with as few as 2,000 iPS-CM per individual tissue. Within μHM, iPS-CM exhibit uniaxial contractility and alignment, robust sarcomere assembly, and reduced variability and hypersensitivity in drug responsiveness, compared to monolayers with the same cellular composition. μHM mounted onto standard force measurement apparatus exhibited a robust Frank-Starling response to external stretch, and a dose-dependent inotropic response to the β-adrenergic agonist isoproterenol.  

Synthetic polymer nanoparticle hydrogels for drug screening

Synthetic polymer nanoparticle hydrogels and polymers can be designed to interact with and sequester targeted bio-macromolecules such as proteins, peptides, and carbohydrates. These relatively inexpensive and target specific polymers could potentially replace current antibody therapies and protein purification procedures.

Employing CRISPR-Cas9 to Target RNA in Live Cells

RNA's location in a cell -- and how and when it gets there -- can influence whether proteins are produced in the right location and at the appropriate time. For instance, proteins important to neuronal connections in the brain, known as synapses, are produced from RNAs located at these contacts. Defective RNA transport is linked to a host of conditions ranging from autism to cancer and researchers need ways to measure RNA movement in order to develop treatments for these conditions. As the intermediary genetic material that carries the genetic code from the cell's nucleus, scientists have long sought an efficient method for targeting RNA in living cells. RNA-programmed genome editing using CRISPR/Cas9 from Streptococcus pyogenes has enabled rapid and accessible alteration of specific genomic loci in many organisms. A flexible means to target RNA would allow alteration and imaging of endogenous RNA transcripts analogous to CRISPR/Cas-based genomic tools, but most RNA targeting methods rely on incorporation of exogenous tags.

Enhanced Method of Geomasking Builds Upon Donut Method Using Demographic Information

Researchers at the University of California, Davis have developed an enhanced geomasking method building upon the current “Donut Method” which considers demographic information when masking medical-related geographic data. In doing this, greater medical validity is preserved and greater research utility is acquired, all without substantial loss in anonymity.

Building blocks for 3D, modular microfluidics

Researchers at the University of CA, Irvine have developed modular microfluidic platforms consisting of microfluidic building blocks that can be connected in various configurations to construct complete microfluidic devices for different applications.

  • Go to Page: