Browse Category:

Categories

[Search within category]

Novel cyanobacteriochromes responsive to light in the far-red to near-infrared region

Researchers at the University of California, Davis have identified new cyanobacteriochromes (CBCRs) that detect and fluoresce in the far-red and near-infrared region of the electromagnetic spectrum.

Treatment of spinal cord injury, traumatic brain injury, stroke and neurodegenerative disorders with a monoclonal antibody

Most people who suffer traumatic spinal cord injuries have incomplete lesions of neural circuits whose function can be partially restored from the reconfiguration of the spared circuits with rehabilitative training. Methods for improving nerve regeneration after spinal cord injury or nerve transplantation are needed for improved patient outcome. Also, neurodegenerative diseases such as amyotrophic lateral sclerosis, Alzheimer’s Disease and Parkinson’s Disease negatively impact quality of life. 

Deriving Human Naïve Pluripotent Stem Cells by Modifying the Hippo Pathway Using Genetic or Chemical Approaches

This invention identifies a method of generating naïve pluripotent stem cells for subsequent use in research or for regenerative medicine.

Use of Embryonic Stem Cell-Specific microRNAs to Safely Promote Induced Pluripotency

Novel use of a family of microRNAs to promote the de-differentiation of somatic cells to induce pluripotent stem cells (iPS cells) for use as therapeutic agents or research tools.

Stimulus-responsive Polymers

Synthetic polymer constructs are an important tool in modern medical practice, but the lack of control over their activity limits their utility. The ability to combine structural function with localized interaction has proven extremely successful in stents, but polymer technology has not advanced sufficiently to serve a wider range of needs. PLGA polyesters can be degraded by hydrolysis facilitating their widespread use in medicine and biomedical research. Their dependence on slow hydrolysis makes for long degradation times (half-life of one year in vivo) limiting their applicability. While degradation can be sped up by copolymerization with more hydrophilic monomers; degradation is still too slow for triggered release or degradation.

Pyrite Shrink-Wrap Laminate As A Hydroxyl Radical Generator

The invention is a diagnostic technology, as well as a research and development tool. It is a simple, easy to operate, and effective platform for the analysis of pharmaceuticals and biological species. Specifically, this platform generates hydroxyl radicals for oxidative footprinting – a technique commonly employed in protein mapping and analysis. The platform itself is inexpenisve to fabricate, scalable, and requires nothing more than an ordinary pipet to use. In addition, it is highly amenable to scale-up, multiplexing, and automation, and so it holds promise as a high-throughput method for mapping protein structure in support of product development, validation, and regulatory approval in the protein-based therapeutics industry.

An Integrated Microfluidic Platform For Size-Selective Single-Cell Trapping

Researchers at the University of California, Irvine have developed a fully integrated microfluidic platform that is configured to separate and isolate single cells. The invention uses hydrodynamic filtration to isolate targeted cells of various sizes. Once the single cells are isolated and sorted, they can be studied individually in a purer state free from other contaminating or unwanted cells. The system does not use biochemical “labels” to identify target cells. It is a label-free separation technique.

Artery-on-a-Chip for Capturing Inflammatory Monocytes to Assess Cardiovascular Health

Researchers at the University of California, Davis have developed a microfluidic device that measures cardiovascular disease risk by quantifying the frequency of adherent monocytes in blood and assessing the activation level of circulating inflammatory cells.

Novel Auditory Diagnostic

Researchers at the University of California, Davis, have developed a novel diagnostic for the auditory system.

Predicting Weight Loss And Fat Metabolism Using Optical Signal Changes In Fat

Researchers at UCI have developed a novel use of an emerging functional imaging technology, Diffuse Optical Spectroscopic Imaging (DOSI), for monitoring changes in subcutaneous adipose tissue (“AT” also known as “fat” tissue), structure and metabolism during weight loss. Changes in subcutaneous adipose tissue structure and metabolism have been shown to correlate with the development of obesity and related metabolic disorders. The invention is a diagnostic tool that assesses the structure and function of fat tissue in vivo.

Molecular Photoswitches as MRI Contrast Agents Sensitive to Light/Bioluminescence

Researchers at the University of California, Davis have developed a light-activated gadolinium contrast agent.

Novel Hydrogel for Optimized Cell Delivery, Culture and Inflammation Prevention from De-cellularized Human Amniotic Membrane

A novel, human amnion derived hydrogel has been shown to considerably optimize cell delivery and scaffolding by increasing cellular survival, proliferation, and integration, as well as significantly decreasing host rejection and morbidity.

Microfabricated Silicon-Based Hollow Microneedles with Integrated Fluid Channels for Transdermal Fluid

Research conducted at the University of California, Davis has led to an improved method and apparatus for puncturing a surface for extraction, in situ monitoring, and substance delivery.

Patient-Specific Ct Scan-Based Finite Element Modeling (FEM) Of Bone

This invention is a software for calculating the maximum force a bone can support. The offered method provides an accurate assessment of how changes in a bone due to special circumstances, such as osteoporosis or a long duration space flight, might increase patient’s risk of fracture.

A Method For Determining Characteristic Planes And Axes Of Bones And Other Body Parts, And Application To Registration Of Data Sets

The invention is a method for deriving an anatomical coordinate system for a body part (especially bone) to aid in its characterization. The method relies on 3-D digital images of an anatomical object, such as CT- or MR-scans, to objectively, precisely, and reliably identify its geometry in a computationally efficient manner. The invention is a great improvement over the current practice of subjective, user-dependent manual data entry and visualization of bones and organs. The applications for well-defined anatomical coordinate systems include robotic surgeries, models for bone density studies, and construction of statistical anatomical data sets.

A High-Throughput Screen For Drug And Disease Investigations In A Simple Neuronal Culture

Drug discovery and development consists of an arduous testing process, and cell-based screening methods represent a crucial source of information in the decision making process to evaluate mode of action, efficacy and toxicity for new therapeutics in early phases if preclinical drug development. Despite advances in cell-based screening assays, a need remains for newer and better assays to identify and validate drug s for treatment and/or prevention of neuronal diseases. Such newer assays should have a higher speed, lower cost, high sensitivity and high signal to noise ratio. Further, there needs to be improved methods for assessing toxicity of drug candidates.

Monoclonal Antibody Against Cer164 (Clone 11)

Mouse monoclonal antibody against the human centrosomal protein 164kDa (Cep164). This antibody binds to the phosphorylation site of Cep164 and has been tested for use in immunocytochemistry/immunofluorescence, immunoprecipitation, and western blot.

Monoclonal Antibody Against ATR-IP (Clone 5)

Mouse monoclonal antibody against the human ATR-interacting protein (ATR-IP). This antibody has been tested for use in immunocytochemistry/immunofluorescence, immunoprecipitation, and western blot.

Monoclonal Antibody Against Cer164 (Clone 26)

Mouse monoclonal antibody against the human centrosomal protein 164kDa (Cep164). This antibody binds to the phosphorylation site of Cep164 and has been tested for use in immunocytochemistry/immunofluorescence, immunoprecipitation, and western blot.

Monoclonal Antibody Against PNPase (Clone 4C11)

Mouse monoclonal antibody against the human mitochondrial polyribonucleotide nucleotidyltransferase 1 (PNPase). This antibody has been tested for use in immunocytochemistry/immunofluorescence, immunoprecipitation, and western blot.

Monoclonal Antibody Against Pnpase (Clone 2A2)

Mouse monoclonal antibody against the human mitochondrial polyribonucleotide nucleotidyltransferase 1 (PNPase). This antibody has been tested for use in immunocytochemistry/immunofluorescence, immunoprecipitation, and western blot.

Monoclonal Antibodies Against Spc24/25 (Clone 2A10)

Mouse hybridoma cell line secret antibody against the human Kinetochore protein Spc24 (SPC24) and Kinetochore protein Spc25 (SPC25). This antibody has been tested for use in immunocytochemistry/immunofluorescence, immunoprecipitation, and western blot.

Automated Liquid Volume Handler for Rapid Concentration of Radioisotopes

UCLA researchers in the Department of Pharmacology have developed a novel, rapid, and fully automated method of concentrating radioisotopes to allow production of PET imaging probes on a clinical scale.

A Blood-based Diagnostic Test for Early Stage Detection of Autism Spectrum Disorders (ASD)

A revolutionary blood-based diagnostic test measures three kinase signaling pathway activities to determine the likelihood of the patient having ASD at an early stage.

Novel Compounds Targeting LRH-1for Treatment of Inflammatory Bowel Disease, Type II Diabetes, Triple Negative Breast Cancer & Pancreatic Cancer

This technology contains a method for modulating the activity of the nuclear receptor LRH-1 with identified small molecule compounds that may be developed to treat inflammatory bowel disease, Type II diabetes, triple negative breast cancer and pancreatic cancer.

  • Go to Page:

University of California
Innovation Alliances and Services

1111 Franklin Street, 5th Floor,Oakland,CA 94607-5200 |
http://www.ucop.edu/ott/
Tel: 510.587.6000 | Fax: 510.587.6090 | UC.technologies@ucop.edu