Browse Category: Medical > Devices

[Search within category]

Automated Critical Congenital Heart Disease Screening Combining Non-Invasive Measurements of Oxygenation and Perfusion

Researchers at the University of California, Davis have developed a computer-implemented method for accurately classifying congenital heart defects in newborns using pulse oximetry and machine learning.

Electromechanical Reshaping Electrode/Corneal-Contact Lens

A novel transparent contact lens device enabling real-time monitoring of corneal curvature during electrochemical vision therapy.

Biomaterial-Bound Insulin For Priming Mesenchymal Stem Cells (MSCs) For Wound Healing

An innovative PEG hydrogel system covalently bound with insulin to safely and effectively prime mesenchymal stem cells (MSCs) and enhance their therapeutic potential in wound healing.

Dressing for Bioelectronic Smart Bandage

Chronic wounds affect over 6.5 million people in the United States costing more than $25B annually. 23% of military blast and burn wounds do not close, affecting a military patient's bone, skin, nerves. Moreover, 64% of military trauma have abnormal bone growth into soft tissue. Slow healing of recalcitrant wounds is a known and persistent problem, with incomplete healing, scarring, and abnormal tissue regeneration. Precise control of wound healing depends on physician's evaluation, experience. Physicians generally provide conditions and time for body to either heal itself, or to accept and heal around direct transplantations, and their practice relies a lot on passive recovery. While newer static approaches have demonstrated enhanced growth of non-regenerative tissue, they do not adapt to the changing state of wound, thus resulting in limited efficacy. One potential unmet clinical need is related to todays rigid form factors. Modern delivery systems lack adequate conformal capability to adapt to complex surfaces (e.g., feet, joints, curved surfaces) where chronic wounds frequently occur. If modern devices have semi-flexible printed circuit boards they have not maintained consistent wound contact during patient movement, leading to variable delivery rates and reduced efficacy.

Portable Therapy Delivery

Chronic wounds affect over 6.5 million people in the United States costing more than $25B annually. 23% of military blast and burn wounds do not close, affecting a military patient's bone, skin, nerves. Moreover, 64% of military trauma have abnormal bone growth into soft tissue. Slow healing of recalcitrant wounds is a known and persistent problem, with incomplete healing, scarring, and abnormal tissue regeneration. Precise control of wound healing depends on physician's evaluation, experience. Physicians generally provide conditions and time for body to either heal itself, or to accept and heal around direct transplantations, and their practice relies a lot on passive recovery. While newer static approaches have demonstrated enhanced growth of non-regenerative tissue, they do not adapt to the changing state of wound, thus resulting in limited efficacy. Advanced wound healing devices generally lack true portability and home-use capability due to bulk, complexity, and/or power requirements. One potential unmet clinical need is the integration of a portable wearable design with modern and sometimes de novo components e.g., specialized microfluidic channels, reliable iontophoretic actuators, and programmable temporal controls.

Onespec: A Novel Expandable Vaginal Examination Device

The next generation pelvic examination device which decreases patient discomfort and enhances visibility to facilitate sample acquisition for diagnostic testing.

Biological Force-Responsive Chromogenicity of Polymeric Hydrogels

A mechanically adaptive hydrogel that changes color in response to force exerted by living cells, enabling force sensing through optical signals.

A Quantitative, Multimodal Wearable Bioelectronic For Comprehensive Stress Assessment And Sub-Classification

A multimodal, wireless wearable device enabling continuous and detailed stress assessment and subclassification.

Techniques For Predicting Immunization Responses

Brief description not available

Collimated Compton Camera

Brief description not available

Systems, Methods, and Media for Determining Fetal Photoplethysmography Information from Non-Invasively Obtained Mixed Photoplethysmography Signals

Researchers at the University of California, Davis have developed a system and method for accurately extracting fetal photoplethysmography information from mixed maternal-fetal signals obtained non-invasively through the maternal abdomen.

Flexor Tendon Imaging Apparatus

Researchers at the University of California, Davis have developed a portable apparatus that standardizes digit positioning and applies counter-resistance for improved imaging of the flexor tendon system in the hand.

Reusable, Sterilizable Surgical Instruments for Deployment of Neuropixels Probes in the Operating Room

Researchers at the University of California, Davis have developed a system of reusable, sterilizable 3D-printed surgical tools that enables safe, precise intraoperative deployment of Neuropixels probes within standard neurosurgical workflows.

A Novel High-Resolution EEG Signal Acquisition System With A Unique EEG Cap Array

A breakthrough one-wire EEG cap with embedded electrode chips provides ultra-sensitive, noise-immune, wide-band brain signal acquisition. It enables non-invasive, real-time, high-resolution recording using dry electrodes, ideal for wearable and clinical neuro-technology applications.

Non-Invasive Tool That Assesses Bruise Injuries Across All Skin Types.

An innovative non-invasive device that accurately determines the age of bruises for all skin types and tones, designed to assist in forensic investigations and medical diagnostics.

Piezoelectric Scaffold Material and Its In Vivo Activation For Nerve Regeneration

Professor Jin Nam and colleagues from the University of California, Riverside have developed novel synthesize piezoelectric scaffolds that can be remotely activated without a physically connected electrical wire to produce optimal electric fields in vivo for enhanced nerve regeneration. The technology works by using a biocompatible nanofibrous scaffold with a mesh-like structure that mimics the body’s natural tissue architecture and is made from piezoelectric materials. This technology allows for the mechano-electrical stimulation (MES) on endogenous or transplanted stem cells to enhance their neural differentiation/maturation. This technology is advantageous because this scaffold can be applied as a conduit or patch and activated remotely and non-invasively.  Fig 1: In vivo characterization of piezoelectric conduits and their impact on sciatic nerve regeneration. (a) A photo showing the transplantation of the P(VDF-TrFE) conduit into the rat to bridge the sciatic nerve gap. (b) Shockwave magnitude-dependent voltage outputs from P(VDF-TrFE) conduits. (c) A zoomed-in voltage output graph showing the  generation of 200 mVp-p under the 4-bar pressure of the shockwave actuation. (d, e) Large-field-of-view immunofluorescence images showing the entire structure of P(VDF-TrFE) conduit and ingrowth tissue, bridging transected sciatic nerve in (d) static and (e) MES conditions (NF200: axonal marker NF200; S1-S4 denote each of the 4 rats in the static group while MES1-MES4 denote each of the 4 rats from the MES group).

Cherenkov-Based Radiation Beam Monitor

Researchers at the University of California, Davis have developed an innovative Cherenkov-based system for calibrating radiotherapy beams, enabling precise, real-time calibration of radiation dose delivery, including for high-intensity FLASH radiotherapy, improving treatment accuracy and reliability.

Hydrogelated Cells for Regenerative Medicine Applications

Researchers at the University of California, Davis have developed a technology that introduces an approach to creating semi-living, non-replicating cellular systems for advanced therapeutic applications.

System And Method Of EAT/US-Guided Pulsed Field Ablation For Intracardiac Applications

A real-time, ultrasound-based imaging modality that improves intracardiac irreversible electroporation accuracy by visualizing electric field distribution during cardiac ablation.

  • Go to Page: