Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Medical > Devices


[Search within category]

Method for Early Detection of Edema and Intercranial Pressure

Researchers at UCR have developed a process that uses optical coherence tomography (OCT) on specific regions of the cranium to detect the onset of edema before severe damage can be done to the brain.  By scanning various regions of the brain with OCT, the early stages of cerebral edema may be visualized at a far earlier time point than otherwise possible.  The scattering pattern of reflected light changes in a predictable manner when brain water content increases.  This allows for a quick and accurate determination of a patient’s risk for developing dangerous ICP levels, thus eliminating the need for a invasive precautionary craniectomy. Fig. 1: diagram of the OCT apparatus being used to measure edema in a mouse brain Fig. 2: table demonstrating the time between OCT detection of artificially induced edema and onset of increased ICP  

Lensfree Tomographic Imaging

UCLA researchers in the Department of Electrical Engineering have developed a system for lens-free tomographic imaging.

An Implantable Electrocorticogram (ECoG)-Brain-Computer Interface System for Restoring Lower Extremity Movement and Sensation

A fully implantable brain-computer interface (BCI) with onboard processing to control a robotic gait exoskeleton as a walking aid for individuals with chronic spinal cord injury (SCI). This technology would alleviate SCI patient’s dependence on wheel chairs, reducing the risk of secondary medical complications that account for an estimated $50 billion/year in healthcare costs.

Lip Protector

UCLA researchers in the David Geffen School of Medicine have designed a protector for lip and tooth during intubation process.

Spatio-Temporal Pacing and Recording for Evaluation, Induction, and Mapping of Arrhythmias

Researchers led by Marmar Vaseghi from the School of Medicine at UCLA have developed a high density electrode array to evaluate, induce, and map arrhythmias.

Method for Removing Breathing Motion Artifacts in CT

UCLA researchers have developed a novel scanning and analysis method to remove breathing motion artifacts in CT scans by integrating motion modeling to the image reconstruction process.

Oral Microsensor Arrays for Remote Monitoring of Salivary Electrolytes for Precision Healthcare

UCLA researchers in the Department of Oral & Maxillofacial Surgery have developed a novel microsensor system for unobtrusive monitoring of oral pH and electrolytes levels. This system is integrated into a data analysis and feedback network for disease prevention and precision care.

A New Catheter Design for Precise Stent Delivery

UCLA researchers in the Department of Radiological Sciences have designed a catheter that increases stent delivery precision.

Hydrostatic pressure-driven passive micropumps

Researchers at UCI have developed an inexpensive and entirely passive pump for microfluidic devices, which yields steady, controllable, and long-lived fluid flow through the device.

Capture device for small urinary tract stones

The invention is a surgical device designed to remove miniature fragments of uroliths that are less than 2 mm in size. Through the invention’s novel design, such small fragments are captured in the device which will then be easily removed by the surgeon. Removing small stone fragments will reduce the need for future medical procedures.

Obstruction Prevention Airway Collar

Though deep sedation is a routine part of many medical procedures, patients under anesthesia are susceptible to airway obstruction as their throat and tongue muscles relax. Most common methods to prevent obstruction are complicated and carry additional risks. Researchers at UCI have developed a safe and comfortable medical collar that maintains patients’ airways and is entirely adjustable.

Near-Realistic Sports Motion Analysis and Activity Monitoring

UCLA researchers in the Department of Computer Science have developed a new technology to fight the growing obesity epidemic by encouraging exercise in video games.

The Method of Enhanced Pressure Sensing Performance for Pressure Sensors

UCLA Researchers in the Departments of Materials Science, Engineering, Chemistry, and Biochemistry have developed conductive microstructure air gaps for use in pressure sensors.

Blood Exchange Device

Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} The medical costs of managing an aging world poses significant economic and social challenges and will ultimately require a long-term solution. One reason for waning capabilities in people with advancing age is a progressive decline in organ function.  One way to increase healthy longevity would be to rejuvenate the regenerative and repair capacity of aged tissues. Heterochronic parabiosis is an experimental model where the vasculature of two animals of different ages are surgically joined together to create a shared circulatory system and has been used in stem cell and aging research in the last few decades. Heterochronic parabiosis has been shown to rejuvenate the performance of stem cells from old tissues at some expense to the young subject, but whether this occurs as a result of shared circulatory factors or shared organ systems is unclear.   UC Berkeley researchers have discovered, and constructed, a blood exchange system that permits computer controlled isochronic and heterochronic blood exchange transfers for animals. The blood exchange apparatus is an in vivo tool to replace heterochronic parabiosis. Compared to parabiosis, the in vivo animal study apparatus is faster, better controlled and is more flexible in the range of available and potential assays that can be performed.  The Blood exchange system enables less invasive and better-controlled studies with more immediate translation to therapies for humans.


This invention is a novel technology developed to treat a patient’s neurological and/or psychiatric conditions. It consists of a system of implantable devices and computational algorithms that not only has autonomous control in sensing and stimulation of electrical signals in the patient’s brain, but also enables interactions with the external environment, thereby enhancing training and learning.

Apparatus and Signal Processing Technique for Real-Time Label-Free High-Throughput Cell Screening

UCLA researchers in the Department of Bioengineering have invented a novel apparatus for real-time label-free high-throughput cell screening.

Biomarker of Dyskinesia to Customize Medication or Deep Brain Stimulation for Parkinson's Disease Patients

This invention has provided methods for detecting dyskinesia in Parkinson’s disease patients and provided a way to titrate current treatment to maximize benefits while minimizing side effects.

Technique for Respiratory Gated Radiotherapy using Low Frame Rate MRI and a Breathing Motion Model

UCLA researchers in the Department of Radiation Oncology have developed a novel method to gate radiotherapy using low frame rate MRI sequences to reduce damage to adjacent tissues during radiotherapy.

High-Throughput Intracellular Delivery of Biomolecular Cargos via Vibrational Cell Deformability within Microchannels

UCLA Researchers in the Departments of Chemistry and Materials Science & Engineering have developed a novel means of delivering intracellular cargo.

Plasmonic Nanoparticle Embedded PDMS Micropillar Array and Fabrication Approaches for Large Area Cell Force Sensing

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a novel cell force sensor platform with high accuracy over large areas.

Electrical Conduction In A Cephalopod Structural Protein

Fabricating materials from naturally occurring proteins that are inherently biocompatible enables the resulting material to be easily integrated with many downstream applications, ranging from batteries to transistors. In addition, protein-based materials are also advantageous because they can be physically tuned and specifically functionalized. Inventors have developed protein-based material from structural proteins such as reflectins found in cephalopods, a molluscan class that includes cuttlefish, squid, and octopus. In a space dominated by artificial, man-made proton-conducting materials, this material is derived from naturally occurring proteins.

Half-Virtual-Half-Physical Microactuator

Researchers at the University of California, Davis have developed a half-virtual-half-physical microactuator that utilizes a combination of computational models and microelectromechanical systems for use in medical devices and mechanical systems.

Titanium Plates For Bone Regeneration

UCLA researchers in the School of Dentistry at the Weintraub Center for Reconstructive Biology have developed a new titanium plate to promote bone regeneration in dental reconstruction procedures.

Modular Miniature Microscopy System

UCLA researchers have developed a modular miniature microscopy system for brain imaging in behaving animals.

A Novel Air/Water Retention Device for Improved Visibility in Colonoscopies

Colon cancer is the third most common cancer diagnosed in men and women in the United States. It is also the third leading cause of cancer-related death in women and the second leading cause in men.  Colonoscopy has been an important tool for screening and prevention of colon cancer. During this procedure, precancerous polyps called adenomas can be removed. Annually, over 15 million colonoscopies are performed each year. A colonoscopy is recommended for adults over the age of 50 in the US to screen for colon cancer. During a colonoscopy, a camera at the end of a flexible tube is inserted into the anus and advanced approximately four feet with the aid of water or air insufflation. Upon withdrawal, the colon is inflated with air to visualize the lining and detect polyps. A good quality exam is dependent on the ability of the anal sphincter muscles to hold water or air in the colon and prevent it from collapsing and obscuring views. There is currently no device available to create a seal in the anus in patients with weak anal sphincter muscles. Weak anal sphincters can occur in patients with history of anorectal surgery, childbirth or increasing age and makes up a growing number of patients undergoing colonoscopy.

  • Go to Page: