Browse Category: Medical > Devices

[Search within category]

Augmented Telemetry from Body-Worn Passive Wireless Sensors

A revolutionary approach to wearable sensors that significantly extends read-out distances and improves reliability without the need for microelectronics.

A Combined Time-Walk and Timing-Shift Correction Method for Dual-Ended Readout TOF-DOI PET Detector

Researchers at the University of California, Davis have developed a technology that significantly improves the timing and spatial resolution of PET scans using dual-ended readout detectors.

Repositioning Transcatheter Heart Valves

A new device designed to improve the process of replacing heart valves through a minimally invasive procedure called transcatheter aortic valve replacement (TAVR).

System And Methods For Acoustic Monitoring Of Electron Radiotherapy

A novel technology for real-time, non-invasive monitoring and adaptive control of electron radiotherapy treatments using acoustic signals.

Machine Vision-Based System and Methods for Wound Diagnostics and Therapies

Precise control of wound healing depends on physician’s evaluation, experience. Physicians provide conditions and time for body to either heal itself, or to accept and heal around direct transplantations, and their practice relies a lot on passive recovery. Slow healing of recalcitrant wounds is a known persistent problem, with incomplete healing, scarring, and abnormal tissue regeneration. 23% of military blast and burn wounds do not close, affecting a patient’s bone, skin, nerves. 64% of military trauma have abnormal bone growth into soft tissue. While newer static approaches have demonstrated enhanced growth of non-regenerative tissue, they do not adapt to the changing state of wound, thus resulting in limited efficacy.

Non-Pharmacological, Neurostimulation Treatment for Hypertension

A groundbreaking non-pharmacological approach to controlling resistant hypertension through personalized, closed-loop neurostimulation.

On-Demand Functionalized Textiles For Drag-And-Drop Near Field Body Area Networks

This technology introduces a flexible, secure, and scalable approach to creating body area networks (BANs) using textile-integrated metamaterials for advanced healthcare monitoring.

Method and System for Signal Separation in Wearable Sensors with Limited Data (with Applications to Transabdominal Fetal Oximetry)

Researchers at the University of California, Davis have developed method for separating quasi-periodic mixed-signals using a single data trace, enhancing wearable sensor applications.

Air-Based Force Sensor for Surgical Applications

An innovative air-based force sensor designed to enhance the safety and precision of surgical instrument insertions.

Ultrafast Light-Induced Inactivation of both Bacteria and Virus based on Bio-Affinity Ligands

Researchers at the University of California, Davis have developed an approach for the rapid inactivation of bacteria and virus using photo-active matrices enhanced with bio-affinity ligands under daylight irradiation conditions.

Electrochemical Point-Of-Care Cerebrospinal Fluid Detection

A revolutionary device for the diagnosis of cerebrospinal fluid (CSF) leaks with rapid, accurate, and low-volume sampling at the point of care.

Device And Method For The Preparation And Operation On Biological Specimen

This device offers a non-invasive solution for treating nasal airway obstructions, significantly improving recovery time and patient outcomes.

Natural Lens Curvature Measurements As A Variable In Calculating Intraocular Lens Power

A novel method for predicting the effective lens position (ELP) in cataract surgery through pre-operative measurements of natural lens curvatures.

Tinnitus Treatment Using Transtympanic Electrical Stimulation

A novel approach to treating tinnitus through electrical stimulation of the inner ear or auditory nerve.

Transabdominal Fetal Oximetry (TFO) for Intrapartum Fetal Health Monitoring

Researchers at the University of California, Davis have developed an innovative technology designed to directly measure fetus blood oxygen saturation level through the maternal abdomen from the onset of labor until birth, thereby improving fetal health outcomes.

Wearable Bioelectronics for Programmable Delivery of Therapy

Precise control of wound healing depends on physician’s evaluation, experience. Physicians provide conditions and time for body to either heal itself, or to accept and heal around direct transplantations, and their practice relies a lot on passive recovery. Slow healing of recalcitrant wounds is a known persistent problem, with incomplete healing, scarring, and abnormal tissue regeneration. 23% of military blast and burn wounds do not close, affecting a patient’s bone, skin, nerves. 64% of military trauma have abnormal bone growth into soft tissue. While newer static approaches have demonstrated enhanced growth of non-regenerative tissue, they do not adapt to the changing state of wound, thus resulting in limited efficacy.

Bioelectronic Smart Bandage For Controlling Wound pH through Proton Delivery

Precise control of wound healing depends on physician’s evaluation, experience. Physicians provide conditions and time for body to either heal itself, or to accept and heal around direct transplantations, and their practice relies a lot on passive recovery. Slow healing of recalcitrant wounds is a known persistent problem, with incomplete healing, scarring, and abnormal tissue regeneration. 23% of military blast and burn wounds do not close, affecting a patient’s bone, skin, nerves. 64% of military trauma have abnormal bone growth into soft tissue. While newer static approaches have demonstrated enhanced growth of non-regenerative tissue, they do not adapt to the changing state of wound, thus resulting in limited efficacy.

Methods for Positronium Lifetime Image Reconstruction

Researchers at the University of California, Davis have developed a technology involving statistically reconstructing positronium (or positron) lifetime imaging (PLI) for use with a positron emission tomography (PET) scanner, to produce images having resolutions better than can be obtained with existing time-of-flight (TOF) systems.

Unsupervised Positron Emission Tomography (PET) Image Denoising using Double Over-Parameterization

Researchers at the University of California, Davis, have developed a novel imaging system that improves the diagnostic accuracy of PET imaging. The system combines machine learning and computed tomography (CT) imaging to reduce noise and enhance resolution. This novel technique can integrate with commercial PET imaging systems, improving diagnostic accuracy and facilitating superior treatment of various diseases.

Headset with Incorporated Optical Coherence Tomography (OCT) and Fundus Imaging Capabilities

Researchers at the University of California, Davis, have developed a headset (e.g., virtual reality headset) in which two imaging modalities, optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO), are incorporated with automated eye tracking and optical adjustment capabilities providing a fully automated imaging system in which patients are unaware that images of the retina are being acquired. Imaging takes place while the patient watches a soothing or entertaining video.

Inverse Design and Fabrication of Controlled Release Structures

Researchers at the University of California, Davis have developed an algorithm for designing and identifying complex structures having custom release profiles for controlled drug delivery.

Haptic Smart Phone-Cover: A Real-Time Navigation System for Individuals with Visual Impairment

Researchers at the University of California, Davis have developed a haptic interface designed to aid visually impaired individuals in navigating their environment using their portable electronic devices.

Intraocular Pressure Microsensor Utilizing Radio Frequency Interrogation

A miniature, implantable sensor for measuring intraocular pressure in the human eye by utilizing radio frequency interrogation.

Real-Time Antibody Therapeutics Monitoring On An Implantable Living Pharmacy

      Biologics are antibodies produced by genetically engineered cells and are widely used in therapeutic applications. Examples include pembrolizumab (Keytruda) and atezolizumab (Tecentriq), both employed in cancer immunotherapy as checkpoint inhibitors to restore T- cell immune responses against tumor cells. These biologics are produced by engineered cells in bioreactors in a process that is highly sensitive to the bioreactor environment, making it essential to integrate process analytical technologies (PAT) for closed-loop, real-time adjustments. Recent trends have focused on leveraging integrated circuit (IC) solutions for system miniaturization and enhanced functionality, for example enabling a single IC that monitors O2, pH, oxidation-reduction potential (ORP), temperature, and glucose levels. However, no current technology can directly and continuously quantify the concentration and quality of the produced biologics in real-time within the bioreactor. Such critical measurements still rely on off-line methods such as immunoassays and mass spectrometry, which are time-consuming and not suitable for real- time process control.       UC Berkeley researchers have developed a microsystem for real-time, in-vivo monitoring of antibody therapeutics using structure-switching aptamers by employing an integrator-based readout front-end. This approach effectively addresses the challenge of a 100× reduction in signal levels compared to the measurement of small-molecule drugs in prior works. The microsystem is also uniquely suited to the emerging paradigm of “living pharmacies.” In living pharmacies, drug-producing cells will be hosted on implantable devices, and real-time monitoring of drug production/diffusion rates based on an individual’s pharmokinetics will be crucial.

Subtractive Microfluidics in CMOS

      Integrating microelectronics with microfluidics, especially those implemented in silicon-based CMOS technology, has driven the next generation of in vitro diagnostics. CMOS/microfluidics platforms offer (1) close interfaces between electronics and biological samples, and (2) tight integration of readout circuits with multi-channel microfluidics, both of which are crucial factors in achieving enhanced sensitivity and detection throughput. Conventionally bulky benchtop instruments are now being transformed into millimeter-sized form factors at low cost, making the deployment for Point-of-Care (PoC) applications feasible. However, conventional CMOS/microfluidics integration suffers from significant misalignment between the microfluidics and the sensing transducers on the chip, especially when the transducer sizes are reduced or the microfluidic channel width shrinks, due to limitations of current fabrication methods.       UC Berkeley researchers have developed a novel methodology for fabricating microfluidics platforms closely embedded within a silicon chip implemented in CMOS technology. The process utilizes a one-step approach to create fluidic channels directly within the CMOS technology and avoids the previously cited misalignment. Three types of structures are presented in a TSMC 180-nm CMOS chip: (1) passive microfluidics in the form of a micro-mixer and a 1:64 splitter, (2) fluidic channels with embedded ion-sensitive field-effect transistors (ISFETs) and Hall sensors, and (3) integrated on-chip impedance-sensing readout circuits including voltage drivers and a fully differential transimpedance amplifier (TIA). Sensors and transistors are functional pre- and post-etching with minimal changes in performance. Tight integration of fluidics and electronics is achieved, paving the way for future small-size, high-throughput lab-on-chip (LOC) devices.

  • Go to Page: