Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Materials & Chemicals > Textiles

Categories

[Search within category]

Nanocellulose-based Aerogel Fibers as Insulation

Researchers at the University of California, Davis have produced continuous, sheath-core, coaxial fibers with highly porous, nanocellulose, aerogel cores for use as high-performance insulators.

Fumigant Detoxification via Reusable Cotton Material

Researchers at the University of California, Davis have developed wearable, highly adsorptive, cotton fabrics that can neutralize fumigants in both open-air and sequestered environments.

Method for Producing Amphiphilic and Amphoteric Soy Protein Colloids, Sub-Micron Fibers, and Microfibrils

Researchers at the University of California, Davis have developed a method for converting high molecular weight and complex globular proteins such as soy and pea into amphiphilic and amphoteric colloids, sub-microns fibers, and microfibrils important to multiple consumer and industrial applications.

A Wireless Textile Based Sensor System for Self-Powered Personalized Health Care

UCLA researchers in the Department of Bioengineering have developed a textile-based sensor system (TS system) for wireless, wearable biomonitoring.

Material For Thermal Regulation

Researchers at UCI have developed a lightweight, flexible thermal material that, due to the extent that it is stretched, allows for tunable control of heat flow.

Pressure Sensitive Fabrics

Piezoelectric sensors have long existed to monitor applied pressures between two objects. In large applications with malleable substrates or where low cost is key, individual piezoelectric sensors are not practical. A variety of applications exist where monitoring the pressure being applied to a soft surface would providing meaningful insights into the system or subject under observation. For instance, in a long-term care setting where patients need to be monitored for pressure ulcers, a bedding material that could sense the pressure points between a person’s body and the mattress could alert care givers that an adjustment in body position is warranted. Likewise, in a sports training application, a pressure sensitive boxing ring canvas could track a boxer’s footwork, or punching power and hand speed if applied to the inside of a punching bag.   Pressure sensitive soft toys could also benefit from feedback that might differ when a child scratches behind their stuffed animal’s ears vs. rubbing its belly.  To achieve discrete sensing in these applications, a low cost bulk sensing system is needed.

Cephalopod-Inspired Adaptive Infrared Camouflage Materials and Systems

This technology is a new class of materials capable of thermal regulation and active camouflage. These cephalopod-inspired materials, configurable to different geometries, can be used in many sectors, ranging from consumer to industrial to military applications.

Hydraulically Actuated Textiles

A soft, planar, actuator based on hydraulically actuated textiles.

Photo-Rechargeable Antibacterial/Antiviral Materials

Researchers at the University of California, Davis have developed a method to incorporate and enhance photo-induced biocidal functions on compounds, polymers, fibers, films, and textiles for daylight-driven rechargeable antibacterial and antivirus applications such as personal protective clothing, food packaging materials and medical devices.

Biomass-Derived Polymers And Copolymers Incorporating Monolignols And Their Derivatives

UCLA researchers in the Departments of Bioengineering, Chemistry and Biochemistry have developed a novel synthetic strategy for the fabrication of biomass-derived polymers incorporating underutilized lignin derivatives.

Enhanced Light-Reflecting Materials

Brief description not available

Microfabricated Surfaces For The Physical Capture Of Bed Bugs And Other Insects

Bed bugs have made a dramatic comeback in recent years, infesting everything from homes and hotels to schools, movie theaters and hospitals. Current forms of treatment (e.g. heat, cold, vacuuming, and pesticides) tend to be costly, tedious, and unreliable. Hiring a professional can be expensive, and unfortunately many bed bug sufferers resort to ineffective, potentially dangerous measures.

Micropatterned Superhydrophobic Textile for Enhanced Biofluid Transport

Researchers at the University of California, Davis have developed a new mechanism of removing liquid from the skin’s surface. The invention presents significant advantages over currently marketed moisture-wicking technologies.

Environmentally Friendly Manufacturing of Nano, Micro and Sub-micro Fibers with Hybrid CAB System

Researchers at the University of California, Davis have developed a novel and high throughput production process of making nano/submicro-sized fibers.

Improved Materials for Lightweight Armor

Brief description not available

CMOS-Compatible Suspended Graphene

Brief description not available

  • Go to Page: