Browse Category: Biotechnology > Health

[Search within category]

Compact Series Elastic Actuator Integration

      While robots have proven effective in enhancing the precision and time efficiency of MRI-guided interventions across various medical applications, safety remains a formidable challenge for robots operating within MRI environments. As the robots assume full control of medical procedures, the reliability of their operation becomes paramount. Precise control over robot forces is particularly crucial to ensure safe interaction within the MRI environment. Furthermore, the confined space in the MRI bore complicates the safe operation of human-robot interaction, presenting challenges to maneuverability. However, there exists a notable scarcity of force-controlled robot actuators specifically tailored for MRI applications.       To overcome these challenges, UC Berkeley researchers have developed a novel MRI-compatible rotary series elastic actuator module utilizing velocity-sourced ultrasonic motors for force-controlled robots operating within MRI scanners. Unlike previous MRI-compatible SEA designs, the module incorporates a transmission force sensing series elastic actuator structure, while remaining compact in size. The actuator is cylindrical in shape with a length shorter than its diameter and integrates seamlessly with a disk-shaped motor. A precision torque controller enhances the robustness of the invention’s torque control even in the presence of varying external impedance; the torque control performance has been experimentally validated in both 3 Tesla MRI and non-MRI environments, achieving a settling time of 0.1 seconds and a steady-state error within 2% of its maximum output torque. It exhibits consistent performance across low and high external impedance scenarios, compared to conventional controllers for velocity-sourced SEAs that struggle with steady-state performance under low external impedance conditions.

Affinity Targeted Immunogens

Researchers at the University of California, Davis have developed an approach to elicit powerful immune responses by engineering the binding capabilities of single chain trimer (SCT) proteins to CD8.

Methods and Systems for Rapid Antimicrobial Susceptibility Tests

Rapid antimicrobial susceptibility testing (AST) is a method for quickly determining the most effective antibiotic therapy for patients with bacterial infections. These techniques enable the detection and quantification of antibiotic-resistant and susceptible bacteria metabolites at concentrations near or below ng/mL in complex media. Employing bacterial metabolites as a sensing platform, the system integrates machine learning data analysis processes to differentiate between antibiotic susceptibility and resistance in clinical infections within an hour. With the results, a clinician can prescribe appropriate medicine for the patient's bacterial infection.

High-Precision Chemical Quantum Sensing In Flowing Monodisperse Microdroplets

      Quantum sensing is rapidly reshaping our ability to discern chemical processes with high sensitivity and spatial resolution. Many quantum sensors are based on nitrogen-vacancy (NV) centers in diamond, with nanodiamonds (NDs) providing a promising approach to chemical quantum sensing compared to single crystals for benefits in cost, deployability, and facile integration with the analyte. However, high-precision chemical quantum sensing suffers from large statistical errors from particle heterogeneity, fluorescence fluctuations related to particle orientation, and other unresolved challenges.      To overcome these obstacles, UC Berkeley researchers have developed a novel microfluidic chemical quantum sensing device capable of high-precision, background-free quantum sensing at high-throughput. The microfluidic device solves problems with heterogeneity while simultaneously ensuring close interaction with the analyte. The device further yields exceptional measurement stability, which has been demonstrated over >103s measurement and across ~105 droplets.  Greatly surpassing the stability seen in conventional quantum sensing experiments, these properties are also resistant to experimental variations and temperature shifts. Finally, the required ND sensor volumes are minuscule, costing only about $0.63 for an hour of analysis. 

O-Acetyl Glycosphingosines and Gangliosides, as well as Their N-Acetyl Analogs

Researchers at the University of California, Davis have developed a technology providing the creation of stable analogs of glycosphingosines and gangliosides containing O-acetylated sialic acid for extensive biological and medical applications.

Affinity Peptides for Diagnosis and Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 and Zika Virus Infections

Researchers at the University of California, Davis have developed a technology to expedite COVID-19 diagnosis and treatment using viral spike protein (S-protein) targeted peptides Zika virus envelop protein.

New Sulfoxide-Containing MS-Cleavable Cross-Linker for Proteomics

An innovative sulfoxide-containing MS-cleavable cross-linker, DBrASO, specifically designed for cysteine residues and aimed at enhancing protein-protein interactions studies and protein complexes architecture analysis.

New Cross-Linking Mass Spectrometry Platform: SDASO-L, SDASO-M, and SDASO-S

An innovative mass spectrometry platform that utilizes sulfoxide-containing MS-cleavable heterobifunctional photoactivated cross-linkers to enhance protein structural elucidation.

Compositions And Methods For Wound Healing

A breakthrough technology using insulin-secreting cells and stem cells to enhance wound healing and reduce scar formation.

Antisense Oligonucleotide Discovery Platform And Splice Modulating Drugs For Hemophilia

Aberrant splicing contributes to the etiology of many inherited diseases. Pathogenic variants impact pre-mRNA splicing through a variety of mechanisms. Most notably, variants remodel the cis-regulatory landscape of pre-mRNAs by ablation or creation of splice sites, and auxiliary splicing regulatory sequences such as exonic or intronic splicing enhancers (ESE and ISE, respectively) and splicing silencers (ESS and ISS, respectively). Splicing-sensitive variants cripple the integrity of the gene, resulting in the production of a faulty message that is either unstable or encodes an internally deleted protein. Antisense oligonucleotides (ASOs) are a promising therapeutic modality for rescuing pathogenic aberrant splicing patterns as their direct base pairing abilities make them highly customizable and specific to targets. Although challenges such as toxicity, delivery and stability represent barriers to the clinical translation of ASOs, solutions to these challenges exist, as exemplified by the recent FDA approval of multiple ASO drugs.Generally, ASO's that target splicing mutations are limited to mutations in and around splicing enhancers and exonic mutations are commonly not targeted because of the idea that the mutation causes a significant change in protein function. 

Substrate And Process Engineering For Biocatalytic Synthesis And Facile Purification Of Human Milk Oligosaccharides (HMOs)

Researchers at the University of California, Davis have developed an innovative method for efficient, high-yield production and easy purification of Human Milk Oligosaccharides (HMOs) using a Multistep One-Pot Multienzyme (MSOPME) process.

Legionaminic Acid Glycosyltransferases for Chemoenzymatic Synthesis of Glycans and Glycoconjugates

Researchers at the University of California, Davis have developed a method for preparing a glycan product containing a nonulosonic acid moiety by means of legionaminic acid transferase fusion proteins

Artificial Intelligence-Based Evaluation Of Drug Efficacy

Researchers at the University of California, Davis have developed a method of using artificial intelligence for assessing the effectiveness or efficacy of drugs that is cheaper, faster, and more accurate than commonly used assay analyses.

Improved laser wakefield acceleration-based system for cancer diagnostics and treatment

Researchers at UC Irvine have developed methods to facilitate the delivery of a high dose, low energy electron beam or X-ray in a compact manner.

Rapid optical detection system for SARS-CoV-2 and other pathogens

Researchers at UC Irvine have developed an optical detection system for SARS-CoV-2 and other pathogens that features improvements in screening time, cost, sensitivity, and practicality. As vaccine availability, economic pressure, and mental health considerations has gradually returned society to pre-pandemic activities that require frequent and close interactions, it is imperative that SARS-CoV-2 detection systems remain effective.

Intra-Beat Biomarker For Accurate Blood Pressure Estimations

Researchers at UC Irvine have developed a novel algorithm that more accurately filters raw blood pressure (BP) data collected from continuous non-invasive blood pressure sensors. The algorithm features improvements in eliminating baseline signal drift while maintaining signal integrity and BP estimation accuracy across significant hemodynamic changes.

Smart Insulin Leak Detector

Brief description not available

(SD2023-036) Matrix-insensitive approach for protease detection

Researchers at UC San Diego have developed a dipeptide composed of two arginine (Arg-Arg) that is capable of inducing the assembly of citrate-capped gold nanoparticles (AuNPs-citrate). Surprisingly, the resulting Arg-Arg-AuNPs are stable over time as the peptide protects the particles from degradation. The assemblies can even be dried without any loss of particles. The assembly of AuNPs-citrate changes their optical properties and the color of the suspension turns from red to blue. Importantly, the assemblies can be dissociated with thiolated polyethylene glycol (HS-PEGs) molecules which leads to the recovery of the initial optical properties of the AuNPs, i.e. the red color of the suspension. Surprisingly, we have observed that such dissociation of AuNPs assemblies is not sensitive to the composition of the medium. It can thus be performed in biological fluids such as pure plasma, saliva, urine, bile, cell lysates or even sea water.

New Generation Bitopic Bcr-Abl Inhibitors

Scientists at UCSF have developed a novel class of BCR-ABL inhibitors that engages two binding sites in BCR-ABL simultaneously. This two-site binding (bitopic) mechanism of action is unprecedented against BCR-ABL, one of the most well-validated targets in oncology.

  • Go to Page: