Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Biotechnology > Health


[Search within category]

Design Random Heteropolymer To Transport Proton Selectively And Rapidly

Despite decades of effort, it remains challenging, if not impossible, to achieve similar transport performance similar to natural channels. Inspired by the known crystal structures of transmembrane channel proteins, protein sequence-structure-transport relationships have been applied to guide material design. However, producing both molecularly defined channel sizes and channel lumen surfaces that are chemically diverse and spatially heterogeneous have been out of reach. We show that a 4-monomer-based random heteropolymer (RHP) exhibits selective proton transport at a rate similar to those of natural proton channels. Statistical control over the monomer distribution in the RHP leads to well-modulated segmental heterogeneity in hydrophobicity, which facilitates the single RHP chains to insert into lipid bilayers. This in turn produces rapid and selective proton transport, despite the sequence variability among RHP chains. We have demonstrated the importance of:the adaptability enabled by the statistical similaritythe modularity afforded by monomer chemical diversity to achieve uniform behavior in heterogeneous systems. 

Smart Dialysis Catheter

UCLA researchers in the Department of Cardiology at UCLA’s David Geffen School of Medicine have developed a smart dialysis catheter that can measure different patient vitals in real-time to prevent hospitalizations due to renal failure.

Low-Cost Paper-Based Microfluidic Diagnostic Device

Prof. Mulchandani and his colleagues from the University of California, Riverside have developed a new paper-based microfluidic platform for the simple and low-cost fabrication of single-walled carbon nanotube (SWNT)-based chemiresistive nanobiosensor arrays for multianalyte sensing from a single small volume sample that may be used as point-of-care diagnostic for a variety of purposes, including healthcare, food safety, environment, etc. This device is created by utilizing a wax printer to construct well-defined hydrophobic barriers for equal splitting and delivery of fluid and an inkjet printer to fabricate chemiresistors using a water-based SWNT ink on a paper substrate. Currently, the quantitative and selective detection of both human serum albumin (HSA) and human immunoglobulin G (hIgG) simultaneously in urine has been demonstrated by UCR. This paper-based chemiresistive biosensor is easy to fabricate, and designed for cost-effective, rapid, sensitive and selective detection of  analyte(s) of interest. This technology provides a platform for automated, disposable paper-based point-of-care diagnostics with multiplexed detection capability and microfluidic controls. Fig 1: A 3D microfluidic multiplexed paper-based biosensor array device.

Novel microbial species that promote fetal tolerogenic immunity

New therapies to prevent the development of asthma and other chronic inflammatory diseases in infants using natural bacterial modulators of fetal immune development.

Neoantigen-specific antibodies for chemically directed immune targeting of KRAS tumors

UCSF scientists have discovered novel antibodies that can specifically and selectively recognize tumor-derived neoantigens. The antibodies can be used for IgG, BiTE or CAR-T-based targeted immunotherapy and small molecule-based directed immune targeting via combination therapy. This dual therapeutic approach has the potential to specifically recognize and treat KRAS (G12C) cancer cell populations with high specificity, significantly improve cancer treatment outcomes, and overcome risk of treatment resistance in patients.

Liquid Metal Enabled Multi-Functional Neural Probes with Ultra-Large Tunable Stiffness

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a novel multi-functional neural probe with ultra-large tunable stiffness for electrochemical sensing and chemical delivery in the brain.

Modulation Of Engineered Immune Cell Receptor Translation Using Noncoding Sequence Elements

It would be beneficial to control the expression of engineered immune cell receptors for use in cell-based cancer immunotherapy, known as adoptive cell therapy (ACT), or in other cell-based therapies using engineered regulatory T cells (engineered Tregs) to treat immune dysfunction such as autoimmunity or organ transplant rejection. In these therapies, immune cells such as T cells or natural killer (NK) cells are genetically modified to express an engineered cell surface receptor that directs these immune cells to tumor cells or specific tissues expressing a target ligand recognized by the receptor, thereby leading to tumor cell destruction (ACT) or moderated immune reaction (engineered Tregs). However, it has been found that ACT can suffer from severe toxic side effects due to overactivation of engineered immune cells used in ACT such as CAR T-cells, due to signaling by the engineered cell surface receptor. Conversely, overactive immune cells can become exhausted and lose efficacy over time. Present attempts to regulate CAR expression do not account for control exerted at the level of protein synthesis. It would therefore be useful to be able to tune the activity of immune cells engineered for ACT or for treatment of immune dysfunction, by either increasing or decreasing the protein synthesis of the engineered immune cell surface receptor, i.e. the engineered TCR or CAR. This research describes compositions and methods for selectively increasing or decreasing the protein synthesis of engineered immune cell surface receptors using noncoding sequences in the 3’-untranslated region (3’-UTR) of messenger RNAs (mRNAs) encoding the engineered TCRs or CARs. These 3’-UTR sequences are sensitive to regulation by translation initiation factor eIF3 and can be used to modulate the strength and time duration of TCR or CAR protein synthesis.  

A Wearable Platform for In-Situ Analysis of Hormones

UCLA researchers in the Department of Electrical and Computer Engineering have developed a highly sensitive, wearable hormone monitoring platform.

Ultra-Low Cost, Transferrable and Thermally Stable Sensor Array Patterned on Conductive Substrate for Biofluid Analysis

UCLA researchers from the Department of Electrical Engineering have invented a novel biosensor array that is ultra-low cost and thermally stable. It prolongs the lifetime of electrode modules of sensor products and allows for extended sensing operation in uncontrolled environments.

Wearable Monitor of Attentional Integrity and Mental Strain

UCLA researchers in the Department of Psychiatry & Biobehavioral Sciences have developed a novel brain monitoring device that can be worn inconspicuously.

Titanium Implants with Novel Roughness

UCLA researchers in the School of Dentistry at the Weintraub Center for Reconstructive Biology have developed a novel titanium implant with hierarchical multi-scale roughness to promote bone growth.

In-Situ Sweat Rate Monitoring For Normalization Of Sweat Analyte Concentrations

UCLA researchers in the Department of Electrical Engineering have developed a method of in-situ sweat rate monitoring, which can be integrated into wearable consumer electronics for physiological analyses.

Multiplexed Sweat Extraction And Sensing Wearable Interface For Normalized And Periodic Analysis

UCLA researchers from the Department of Electrical Engineering have developed a novel sweat induction and sensing platform to achieve personalized physiological monitoring non-invasively.

Novel Adjustable Caliber Catheter System

UCLA researchers in the Department of Radiological Sciences have designed a new adjustable catheter system for use in embolectomy or thrombectomy procedures.

Stamping-based Method for Microwell Production and Cell Aggregate Formation

Researchers at the University of California, Davis have developed a 3-D printed stamping system (the “Aggrestamp”) with the capability for in-situ production of microwells that facilitate cell aggregate formation.

Use of Machine Learning to Predict Non-Diagnostic Home Sleep Apnea Tests

Researchers led by Robert Stretch from the Division of Pulmonary, Critical Care & Sleep Medicine at UCLA have developed an algorithm that can predict whether a patient will have a non-diagnostic home sleep apnea test based upon data from the electronic health record and a brief questionnaire.

Milk Fat Globules As A Universal Delivery System

Researchers at the University of California, Davis have developed methods that utilize molecules encapsulated in milk fat globules and plant oleosomes to deliver bioactive compounds for a variety of applications.

Biomimetic Conductive Hydrogels

UCLA researchers in the Department of Bioengineering have developed a novel electrically conductive scaffold system with a hyaluronic acid (HA)-based hydrogel for biomimetic research to treat spinal cord and other central nervous system (CNS) injuries.

Systems and Methods for Monodisperse Drop Generation and Use

UCLA researchers in the Department of Bioengineering have developed systems and methods to produce single particle, monodisperse droplets for use in digital assays, targeted drug delivery, and theranostics.

Neural Modulation Of Autonomic Nervous System To Alter Memory And Plasticity Of The Autonomic Network

Researchers at UCLA from the Departments of Medicine and Bioengineering have created a device that modulates the autonomic nervous system to treat heart conditions like arrhythmias.

Continuous, Quantitative, Selective, Non-Enzymatic Glucose Monitoring Using Conductimetric Analysis

A new molecule that enables glucose monitoring using measurements of solution conductivity. 

Predicting Cefixime Susceptiblity Using Molecular Genotyping

UCLA researchers in the David Geffen School of Medicine have developed a novel method to detect the susceptibility of Neisseria gonorrhoeae to the antibiotic cefixime.

Novel Fret Method

Dr. Jiayu Liao and colleagues at the University of California, Riverside have developed a FRET assay using nitrobenzoxadiazole (NBD) and coumarin (CUM) amino acid analogs as a FRET pair.  These fluorophores are genetically encoded into peptides and proteins surrounding a protease cleavage site or ligand binding site and used for FRET-based high throughput screening for enzymes or small molecule inhibitors involved in pathways such as SUMOylation. Researchers have demonstrated FRET for peptides encoded with NBD and CUM separated by 4 and 6 amino acids and excited at 340 nm (Figure 1). Figure 1.  Fluorescent intensity of peptide I (6 amino acids between CUM and NBD) and II (4 amino acids between CUM and NBD) excited at 340 nm.  

Novel Non-Antibody-Based Chimeric Antigen Receptor Against HIV That Also Protects Cells From Infection

UCLA researchers in the Department of Medicine have developed a novel chimeric antigen receptor (CAR) that targets T cells against HIV while protecting T cells from HIV infection.

Novel Protease for Oncology and Inflammatory Diseases

The technology is a novel protease that reduces the ability of cells to respond to the inflammatory cytokine Tumor Necrosis Factor (TNF). High TNF levels have been linked to rheumatoid arthritis, Crohn’s disease and many types of cancers.

  • Go to Page: