Browse Category: Biotechnology > Health

[Search within category]

Development of Dominant Negative CD40L Antagonists DACD40L

Researchers at the University of California, Davis have engineered dominant negative CD40L mutant polypeptides that inhibit CD40/CD40L-mediated signaling, offering therapeutic potential for inflammatory, immune disorders, and cancer with improved safety profiles.

Method for Detection of Virus Transmission Enhancing Mutations Using Population Samples of Genomic Sequences

Researchers at the University of California, Davis have developed a computer-implemented method to identify viral mutations that enhance transmission and predict their prevalence in populations over time.

Photoactive Material Blends as Cardiac Photostimulators

This invention introduces a novel approach to cardiac tissue stimulation and maturation through the use of photoactive organic and biological material blends.

An Implantable Electrocorticogram (Ecog)-Brain-Computer Interface System For Restoring Lower Extremity Movement And Sensation

A fully implantable brain-computer interface (BCI) system that enables direct brain control of lower extremity prostheses to restore walking after neural injury.

A Novel 3D-Bioprinting Technology Of Orderly Extruded Multi-Materials Via Photopolymerization

POEM is a groundbreaking 3D bioprinting technology enabling high-resolution, multi-material, and cell-laden structure fabrication with enhanced cell viability.

Hybrid Force Radiometric Array with Direct Analog Force-to-RF Conversion

This technology introduces a novel approach for bridging force sensing with wireless communication through direct analog force-to-RF conversion provides lower power consumption and lower costs.

Vancomycin-Teixobactin Conjugates

A novel approach to significantly enhance vancomycin's effectiveness against drug-resistant pathogens by conjugating it with a minimal teixobactin pharmacophore.

Nalm6 Human Pre-B Cell Lines Expressing Aid Or Cas9

Innovative cell lines enabling precise genetic modifications to advance research in gene function, disease modeling, and potential therapeutic interventions.

3D Cardiac Strain Analysis

An advanced geometric method for comprehensive 3D cardiac strain analysis, enhancing diagnosis and monitoring of myocardial diseases.

Centrifugal Microfluidics for Rapid Bacterial Growth and Antibiotic Susceptibility Testing

A novel device leveraging centrifugal microfluidics to accelerate bacterial growth and rapidly determine antibiotic susceptibility.

Brain-to-Text Communication Neuroprosthesis

Researchers at the University of California, Davis have developed a Brain-Computer Interface (BCI) technology that enables individuals with paralysis to communicate and control devices through multimodal speech and gesture neural activity decoding.

Nanostructures For Gene Delivery

Nucleic acid therapies hold vast therapeutic potential. FDA approved therapies include mRNA vaccines against SARS-COV2 and CRISPR/CAS9 treatment to treat sickle cell.  Both therapies use non-viral methods to deliver designer nucleic acid therapies to cells. However, a limitation of these approaches is the lack of organ and cell-specific delivery. Controlling gene delivery and expression in various cell subsets is challenging. UC Berkeley researchers have shown that the nanoscale topology of CpG oligodeoxynucleotide (CpG-ODN) motifs can be used to stimulate various immune cell subsets and alter gene expression from exogenously delivered mRNA in distinct immune cell subsets. CpG-ODNs of different classes are known to induce different inflammatory profiles in immune cells based on the structure and nanoscale topology of the short DNA strand. The researchers have found novel nanostructures which can be used to present or deliver CpGs to various cell subsets and regulate gene expression in these subsets.

Microscopy System

Researchers at the University of California, Davis have developed a microscopy system combining optical coherence and confocal fluorescence microscopy for accurate Dry Eye Disease diagnosis.

REVEALR Technology for Viral Detection

A novel diagnostic technology offering rapid, accurate, and inexpensive detection, genotyping, and quantification of viral RNA in patient-derived samples, enhancing public health capabilities.

System And Methods For Acoustic Monitoring Of Electron Radiotherapy

A novel technology for real-time, non-invasive monitoring and adaptive control of electron radiotherapy treatments using acoustic signals.

Advanced Vaccine Technology: Lipid Nanoparticle Adjuvants

This technology represents a pioneering approach to vaccine development, focusing on encapsulated adjuvants and antigens to enhance efficacy while minimizing side effects.

Monoclonal Neutralizing Antibodies Specific for Canine TNF Alpha

Researchers at the University of California, Davis have developed monoclonal antibodies engineered for the treatment and detection of autoimmune disorders and cancers in dogs.

AI-Powered Trabecular Meshwork Identification for Glaucoma Surgeries

A revolutionary software that integrates with surgical microscopes to accurately locate the trabecular meshwork (TM), enhancing the safety and efficiency of glaucoma surgeries.

Nanoparticle Therapeutic Vaccines for Cancer Treatment

A cutting-edge vaccine delivery platform that enhances tumor treatment by co-delivering MHC class I and II restricted antigens.

Non-Pharmacological, Neurostimulation Treatment for Hypertension

A groundbreaking non-pharmacological approach to controlling resistant hypertension through personalized, closed-loop neurostimulation.

On-Demand Functionalized Textiles For Drag-And-Drop Near Field Body Area Networks

This technology introduces a flexible, secure, and scalable approach to creating body area networks (BANs) using textile-integrated metamaterials for advanced healthcare monitoring.

Method and System for Signal Separation in Wearable Sensors with Limited Data (with Applications to Transabdominal Fetal Oximetry)

Researchers at the University of California, Davis have developed method for separating quasi-periodic mixed-signals using a single data trace, enhancing wearable sensor applications.

Spectral Kernel Machines With Electrically Tunable Photodetectors

       Spectral machine vision collects both the spectral and spatial dependence (x,y,λ) of incident light, containing potentially useful information such as chemical composition or micro/nanoscale structure.  However, analyzing the dense 3D hypercubes of information produced by hyperspectral and multispectral imaging causes a data bottleneck and demands tradeoffs in spatial/spectral information, frame rate, and power efficiency. Furthermore, real-time applications like precision agriculture, rescue operations, and battlefields have shifting, unpredictable environments that are challenging for spectroscopy. A spectral imaging detector that can analyze raw data and learn tasks in-situ, rather than sending data out for post-processing, would overcome challenges. No intelligent device that can automatically learn complex spectral recognition tasks has been realized.       UC Berkeley researchers have met this opportunity by developing a novel photodetector capable of learning to perform machine learning analysis and provide ultimate answers in the readout photocurrent. The photodetector automatically learns from example objects to identify new samples. Devices have been experimentally built in both visible and mid-infrared (MIR) bands to perform intelligent tasks from semiconductor wafer metrology to chemometrics. Further calculations indicate 1,000x lower power consumption and 100x higher speed than existing solutions when implemented for hyperspectral imaging analysis, defining a new intelligent photodetection paradigm with intriguing possibilities.

Modular Surface Display Systems For Microbial Selection And Targeting

Achieving durable engraftment and spatial localization of engineered microbes in complex environments, such as the gut microbiome, has been a persistent challenge. Current methods to select and isolate engineered microbes in the lab rely on antibiotic-based selection systems, which are unsuitable for in vivo applications due to safety concerns, environmental risks, and regulatory hurdles. Moreover, these methods lack the precision needed for selective recovery and targeting within diverse microbial communities.  UC Berkeley researchers have developed an innovative framework that integrates plasmid-based systems and CRISPR-associated transposase systems (CASTs) to enable precise delivery of genetic cargoes encoding surface display systems. These systems, when expressed, allow engineered microbes to display modular binding domains capable of interacting with a range of targets, including but not limited to host associated mucus and magnetic particles. This modularity expands the toolkit for selective enrichment, spatial targeting, and functionalization of engineered microbes in diverse contexts. For example, modified microbes can be magnetized for recovery through magnetic separation or equipped with binding domains to interact with other substrates or biomolecules, unlocking targeted applications in microbiome engineering, therapeutic delivery, and biomanufacturing. This approach not only enables the enrichment and spatial targeting of engineered microbes within complex communities, such as those in the gut, but also provides a versatile method for isolating bacterial strains or directing microbes to specific niches without relying on antibiotics. By combining plasmid modularity with the precision and stability of CASTs, the platform establishes a robust and adaptable solution for microbiome modulation. 

Ultrafast Light-Induced Inactivation of both Bacteria and Virus based on Bio-Affinity Ligands

Researchers at the University of California, Davis have developed an approach for the rapid inactivation of bacteria and virus using photo-active matrices enhanced with bio-affinity ligands under daylight irradiation conditions.

  • Go to Page: