Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Biotechnology > Health

Categories

[Search within category]

Deep Brain Stimulation for the Treatment of Post-Traumatic Stress Disorder, Anxiety Disorders, and Disorders with Psychotic Features

UCLA researchers have developed a novel therapeutic strategy to alleviate post-traumatic stress disorder (PTSD) symptoms via deep brain stimulation.

Small Molecules for Melanoma Treatment

Traditional anti-cancer treatments used for metastatic melanoma (skin cancer) can result in cell toxicity, poor efficacy, and low patient survival. UCI researchers have uncovered a class of potent compounds that inhibit cancer cell growth and induce cancer cell death by targeting RhoJ signaling pathways.

Wireless In Situ Sensors in Stents for the Treatment and Monitoring of Chronic Obstructive Lung Disease (COPD)

UCLA researchers in the Department of Electrical Engineering have developed a novel wireless sensor for external and internal biosensing applications.

Exercise Promotion, Measurement, and Monitoring System

UCLA researchers in the Department of Electrical Engineering have developed a novel wireless sensor and exercise system for real-time exercise promotion and monitoring.

Anti-Microbial Contact Lens With Ocular Drug Delivery

Anti-microbial, anti-fungal drug eluting contact lens for the controlled release of ophthalmic therapeutics.

Novel Anti-Bacterial, Anti-Fungal Nanopillared Surface

Medical devices are susceptible to contamination by harmful microbes, such as bacteria and fungi, which form biofilms on device surfaces. These biofilms are often resistant to antibiotics and other current treatments, resulting in over 2 million people per year suffering from diseases related to these contaminating microbes. Death rates for many of these diseases are high, often exceeding 50%. Researchers at UCI have developed a novel anti-bacterial and anti-fungal biocomposite that incorporates a nanopillared surface structure that can be applied as a coating to medical devices.

Real-Time Aortic Flow Meter and Syringe Pump for Partial-Aortic Occlusion

Researchers at the University of California, Davis have developed a device which utilizes blood pressure waveforms to estimate the real-time rate of aortic flow past an endovascular balloon.

A Prognostic And Diagnostic Algorithm For Various Molecular Subtypes Of Breast Cancers, Including Her2 Positive And Triple Negative Breast Cancers (TNBCs)

Breast cancer is second leading cause of death among women in the United States in 2016 and It is estimated to be responsible for over 40,000 deaths in 2017 (ACS). The use of biomarkers plays a key role in the management of patients with breast cancer, especially in the decision process to select the appropriate systemic therapy to be administered. Furthermore, the discovery of new tissue-based and gene biomarkers has led to the development of a “molecular signature” for predicting patient outcome and treatment modalities. There are three subtypes of breast cancer that are determined by performing specific tests on a sample of the tumor. The first subtype is a tumor that is positive/negative for a hormone receptor, either estrogen (ER) and/or progesterone (PR); tumors without these receptors are classified “hormone receptor-negative”. The second subtype is characterized by the overexpression the human epidermal growth factor receptor 2 (HER2) protein on the tumor.  HER2 proteins are receptors on normal breast cells and help control the growth, but when overexpressed make the tumor grow faster and are designated HER2-positive tumors. The last subtype is designated triple-negative, since it does not express ER, PR, and/or HER2. 

A Method for Inhibition of de novo Lipogenesis

The obesity epidemic currently afflicting the US and other developed countries has resulted in a marked increase in the incidence of the metabolic syndrome and its associated pathologies, including nonalcoholic fatty liver disease (NAFLD), estimated to affect 30% of Americans. Although NAFLD is characterized by lipid droplet buildup in hepatocytes, it is not accompanied by liver damage, inflammation, and fibrosis unless combined with other risk factors, such as endoplasmic reticulum (ER) stress or mitochondrial dysfunction. In the context of simple, nonsymptomatic liver steatosis, ER stress or mitochondrial dysfunction trigger nonalcoholic steatohepatits (NASH), a serious disease that can progress to liver cirrhosis, resulting in loss of liver function, and hepatocellular carcinoma (HCC), one of the most deadly cancers. The obesity epidemic currently afflicting the US and other developed countries has resulted in a marked increase in the incidence of the metabolic syndrome and its associated pathologies, including nonalcoholic fatty liver disease (NAFLD), estimated to affect 30% of Americans. Although NAFLD is characterized by lipid droplet buildup in hepatocytes, it is not accompanied by liver damage, inflammation, and fibrosis unless combined with other risk factors, such as endoplasmic reticulum (ER) stress or mitochondrial dysfunction. In the context of simple, nonsymptomatic liver steatosis, ER stress or mitochondrial dysfunction trigger nonalcoholic steatohepatits (NASH), a serious disease that can progress to liver cirrhosis, resulting in loss of liver function, and hepatocellular carcinoma (HCC), one of the most deadly cancers.

A Method For Screening Drugs, Nutritional Supplements And Probiotics For Their Ability To Enhance Or Disrupt The Gut Barrier

The gut is a complex environment; the gut mucosa maintains immune homeostasis under physiological circumstances by serving as a barrier that restricts access of trillions of microbes, diverse microbial products, food antigens and toxins to the largest immune system in the body. The gut barrier is comprised of a single layer of epithelial cells, bound by cell-cell junctions, and a layer of mucin that covers the epithelium. Loosening of the junctions induced either by exogenous or endogenous stressors, compromises the gut barrier and allows microbes and antigens to leak through and encounter the host immune system, thereby generating inflammation and systemic endotoxemia. An impaired gut barrier (e.g. a leaky gut) is a major contributor to the initiation and/or progression of various chronic diseases including, but not limited to, metabolic endotoxemia, type II diabetes, fatty liver disease, obesity, atherosclerosis and inflammatory bowel diseases. Despite the growing acceptance of the importance of the gut barrier in diseases, knowledge of the underlying mechanism(s) that reinforce the barrier when faced with stressors is incomplete, and viable and practical strategies for pharmacologic modulation of the gut barrier remain unrealized.

Diagnosis and Treatment of Inflammatory Disease by Glycan Profiling of High Density Lipoprotein (HDL)

Researchers at the University of California, Davis have developed a method for diagnosing an individual patient’s risk of inflammatory disease based on glycan profiling of high density lipoprotein (HDL). The resulting profile is then used to recommend a treatment program of dietary, lifestyle, or pharmaceutical interventions (or combination thereof), to improve health and decrease the risk of inflammation-induced disease by modulating the patient’s HDL glycosylation pattern.

Novel Surgical Device for Scleral Buckling Retinal Detachment Repair

UCLA researchers in the Departments of Ophthalmology and Engineering have developed a new surgical device used in retinal detachment surgery.

Peripheral Nerve Repair By Peptide Amphiphile Nanofibers.

UCLA researchers in the Department of Surgery have developed a novel method that promotes directed nerve growth and peripheral nerve regeneration using peptide amphiphile (PA) nanofibers. The combination of conduit and PA nanofiber scaffold offers greater success than currently used methods of bridging with empty conduits. This novel approach may become a substitute for nerve graft for clinical use in the treatment of peripheral nerve injuries.

Developing Physics-Based High-Resolution Head And Neck Biomechanical Models

UCLA researchers in the Department of Radiation Oncology at the David Geffen School of Medicine have developed a new computational method to model head and neck movements during medical imaging/treatment procedures.

Microfluidics Device For Digestion Of Tissues Into Cellular Suspension

A microfluidic device that separates single cells from whole tissue in a rapid and gentle manner using hydrodynamic fluid flow. The separated single cell suspensions can then be used in tissue engineering applications, regenerative medicine and the study of cancer.

An Efficient E-Cigarette Aerosol Generation And Exposure System For Rodents

UCLA researchers have developed an efficient electronic cigarette aerosol generator and exposure system for use in mice to study the health effects of electronic cigarette aerosol.

Aptamer functionalized shrink-induced high surface area electrochemical sensors

A low-cost method of manufacturing a, rough high surface area electrodes with a dissolvable polymer coating to improve surface wettability and electrochemical sensing.

Fully Automated Synthesis Of 16B-[18F] Fluorodihydrotestosterone ([18F]-FDHT)

UCLA researchers in the Department of Molecular and Medical Pharmacology have developed a method for the fully automated synthesis of 16β- 18F-fluorodihydrotestosterone (18F-FDHT), a probe to monitor prostate cancer.

Cloud-Based Pulmonary Spirometry System

Inventors at UC Irvine developed a portable spirometry system that automatically uploads patient pulmonary data to the Internet, and provides a cloud-based platform to analyze and share the data with an attending healthcare professional.

Multi-Modal Depth-Resolved Tissue Status Monitor

UCLA researchers in the Department of Bioengineering have invented a novel multi-modal depth-resolved tissue status monitor.

Preparation Of Functional Homocysteine Residues In Polypeptides And Peptides

UCLA researchers in the Department of Bioengineering and Department of Chemistry & Biochemistry have developed a novel method for efficient, chemoselective transformation of methionines in peptides and polypeptides into stable, functional homocysteine derivatives. This method provides a means of creation of new functional biopolymers, site-specific peptide tagging, and synthesis of biomimetic and structural analogs of peptides.

Novel Small Protein Inhibitors for Rapid and Controllable CRISPR-Cas9 Interference

This invention identifies a novel class of natural protein-based inhibitors of CRISPR-Cas9, which could eliminate off-target effects of Cas9-mediated gene editing. It also presents an attractive antibiotic strategy and a potential biodefense agent against CRISPR bioterror threat.

Holographic Opto-Fluidic Microscopy

UCLA researchers in the Department of Electrical Engineering have developed a system for holographic opto-fluidic microscopy.

Lensfree Super-Resolution Holographic Microscopy Using Wetting Films On A Chip

UCLA researchers in the Department of Electrical Engineering have developed a novel lensfree super-resolution holographic microscope using wetting films on a chip.

Quantum Dot Enabled Detection Of Escherichia Coli Using A Cell-Phone

UCLA researchers in the Department of Electrical Engineering have developed a platform that can detect E. coli using a cell phone.

  • Go to Page: