Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Biotechnology > Health


[Search within category]

Integrin Binding to P-Selectin as a Treatment for Cancer and Inflammation

Researchers at the University of California, Davis have developed a potential drug target for cancer and inflammation by studying the binding of integrins to P-selectin.

Modulating MD-2-Integrin Interaction for Sepsis Treatment

Researchers at the University of California, Davis have developed a potential therapeutic treatment for sepsis by modulating the interaction between integrins and Myeloid Differentiation factor 2 (MD-2).

Tumor-Suppressing Growth Factor Decoy

Researchers at the University of California, Davis have developed dominant-negative FGF2 antagonists that suppress angiogenesis and tumor growth.

(SD2021-262) A wearable tool for colorimetric monitoring of proteases

Facemasks in congregate settings prevent the transmission of SARS-CoV-2 and help control the ongoing COVID-19 global pandemic because face coverings can arrest transmission of respiratory droplets. While many groups have studied face coverings as personal protective equipment, these respiratory droplets can also serve as a diagnostic fluid to report on health state; surprisingly, studies of face coverings from this perspective are quite limited.

Nanopore Sequencing of RNA Using Reverse Transcription

This invention demonstrates that an engineered cellular reverse transcriptase is a potent motor protein that can processively thread single-stranded RNA (ssRNA) through the MspA biological nanopore in single nucleotide steps while it is synthesizing cDNA. Notably, this represents a first-ever achievement for threading of ssRNA through the engineered Mycobacterium smegmatis porin A (MspA) nanopore in discrete steps, and also for ssRNA sequencing with the MspA nanopore. The inventors constructed the “quadromer map” for ssRNA in the MspA nanopore, which is essentially a table that can convert measured nanopore ion current to RNA sequences, using ssRNAs of known sequences. In addition, the inventors discovered that the single-molecule kinetic rates of the reverse transcriptase are affected by the presence of stable RNA secondary structures. Monitoring this biophysical behavior can be used to determine RNA structures during nanopore sequencing.  Nanopore sequencing is a powerful third generation sequencing technology that offers advantages such as ultra-long read length and direct detection of chemically modified bases. One of the key components of developing a successful nanopore sequencer is identifying potent motor proteins (such as polymerases or helicases) that can thread single-stranded (ss) DNA or ssRNA through the nanopore in discrete steps with high processivity.   

Deep Learning-Based Approach to Accelerate T cell Receptor Design

Researchers at the University of California, Davis have developed a deep learning simulation model to predict mutated T-cell receptor affinity and avidity for immunotherapy applications.

High Accuracy Machine Learning Model for Predicting Liver Cancer Risk

Researchers at the University of California, Davis have developed a method to predict if patients diagnosed with nonalcoholic fatty liver disease are at risk for developing liver cancer using a machine learning algorithm that analyzes a variety of easily available phenotypes and risk factors.

Positive Allosteric Modulators Target TRPV1 with Analgesic Effects

Researchers at the University of California, Davis have developed de novo positive allosteric modulators (PAMs) that bind to TRPV1 proteins involved with pain-sensing in order to provide analgesic effects.

Novel Agonist alpha2aAR Analgesics

Brief description not available

Conjugates That Combine HDAC Inhibitors and Retinoids into Disease Preventatives/Treatments

Researchers at the University of California, Davis have developed methods for creating compositions with the potential to prevent or treat cancer or metabolic diseases. These compositions combine conjugates with covalently linked HDAC inhibitors and retinoids.

Inter-Brain Measurements for Matching Applications

This technology utilizes inter-subject measurement of brain activity for the purpose of matching individuals. In particular, the invention measures the similarity and differences in neural activity patterns between interacting individuals (either in person or online) as a signature measurement for their matching capabilities. Relevant applications can be in the world of human resources (e.g., building collaborative teams), patient-therapist matching and others. The application relies on the utilization of both custom and commercial devices for measuring brain activity.

Acid Degradable Solid Lipid Nanoparticles

The inventors demonstrate that polyethylene glycol (PEG) conjugated to cholesterol via an acid degradable linkage composed of an azide-benzaldehyde acetal has the potential to allow solid lipid nanoparticles (SLNs) to be PEGylated with mole ratios up to 50%. The azide-benzaldehyde acetal, has its azide in the para position, and generates stable acetals with a t ½ of > 1000 minutes at pH 7.4. These PEG-acetals can be formulated into SLNs, and stored, and then reduced prior to biological use, to generate an amino acetal that has t ½ < 60 minutes at pH 7.4 and several minutes at pH 5.0. The ultra-PEGylated lipids were efficient at transfecting a variety of organs, including the muscle, the lung, spleen and liver and were also able to transfect the blood. Acid degradable PEG-lipids have great potential for overcoming the PEG dilemma, but have previously been challenging to develop due to the synthetic challenges associated with working with acetals and their instability at pH 7.4. (SLNs contain a PEGylated lipid, generally in the 1-5% range, which is needed to maintain SLN stability, size, and tissue diffusion, and lower toxicity. However, excessive PEGylation also results in lower cell uptake and endosomal disruption — a paradox referred to as the PEG dilemma.) The inventors anticipate numerous applications of the azide-benzaldehyde acetal linker, given its unique ability to be stable prior to reductive activation. 

Sialic Acid Inhibitor in Cancer Treatment and Immunotherapy

Researchers at the University of California, Davis have developed a method of inhibiting sialic acid expression which is commonly related to bacterial and viral infections, metastatic cancer, and other pathogenic processes.

Multiplex Epigenetic Editing using a Split-dCas9 System

Researchers at the University of California, Davis have developed a new epigenetic editing system that overcomes packaging limitations of viral delivery systems and can be used for multiplexed epigenetic editing of a genome.

Staged Fascial Closure Device

The current invention enables the safe closure of an open abdomen during surgery when the abdominal fascia cannot be closed primarily.

Small Molecules for Treating Clostridium perfringens-related Bacterial Infections

Researchers at the University of California, Davis have developed a method of treating infections caused by Clostridium perfringens bacteria - via inhibiting the bacteria’s normal quorum sensing processes.

Optimized Virus-like Particles for Cas9 RNPs & Transgene/HDR Template Delivery

The inventors have developed optimized methods for using virus-like particles for the co-delivery of Cas9 ribonucleoprotein complexes and: a lentiviral genome that encodes a large transgene, such as a chimeric angtigen receptor (CAR) transgene a lentiviral genome that does not encode a sgRNA expression cassette a method for nucleofecting VLPs + homology directed repair (HDR) donor template together to enhance HDR in treated cells  

Using Escherichia coli to Produce Human Milk Oligosaccharide Lactodifucotetraose

Researchers at the University of California, Davis have developed a method for producing human milk oligosaccharide lactodifuctotetraose (LDFT) using E. coli.

A Gene Therapy for treating Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC)

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a predominantly genetic-based heart disease characterized by right but also recently left ventricular dysfunction, fibrofatty replacement of the myocardium leading to fatal/severe ventricular arrhythmias leading to sudden cardiac death in young people and athletes. ARVC is responsible for 10% of sudden cardiac deaths in people ≥65 years of age and 24% in people ≤30 years of age. ARVC is thought to be a rare disease as it occurs in 1 in 1000-5000 people, although the prevalence may be higher as some patients are undiagnosed or misdiagnosed due to poor diagnostic markers. Growing evidence also reveals earlier onset since pediatric populations ranging from infants to children in their teens are also particularly vulnerable to ARVC, highlighting the critical need to identify and treat patients at an earlier stage of the disease. At present there are no effective treatments for ARVC nor has there been any randomized clinical trials conducted to examine treatment modalities, screening regimens, or medications specific for ARVC. As a result, treatment strategies for ARVC patients are directed at symptomatic relief of electrophysiological defects, based on clinical expertise, results of retrospective registry-based studies, and the results of studies on model systems. The current standard of care is the use of anti-arrhythmic drugs (sotalol, amniodarone and beta-blockers) that transition into more invasive actions, which include implantable cardioverter defibrillators and cardiac catheter ablation, if the patient becomes unresponsive or intolerant to anti-arrhythmic therapies. However, current therapeutic modalities have limited effectiveness in managing the disease, 40% of ARVC patients (a young heart disease) die within 10-11 years after initial diagnosis, highlighting the need for development of more effective therapies for patients with ARVC.

(SD2019-040) Directed modification of cellular RNA via nuclear delivery of CRISPR/Cas

Present strategies aimed to target and manipulate RNA in living cells mainly rely on the use of antisense oligonucleotides (ASO) or engineered RNA binding proteins (RBP). Although ASO therapies have been shown great promise in eliminating pathogenic transcripts or modulating RBP binding, they are synthetic in construction and thus cannot be encoded within DNA. This complicates potential gene therapy strategies, which would rely on regular administration of ASOs throughout the lifetime of the patient. Furthermore, they are incapable of modulating the genetic sequence of RNA. Although engineered RBPs such as PUF proteins can be designed to recognize target transcripts and fused to RNA modifying effectors to allow for specific recognition and manipulation, these constructs require extensive protein engineering for each target and may prove to be laborious and costly. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:8.0pt; mso-para-margin-left:0in; line-height:107%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

  • Go to Page: