Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Engineering > Robotics and Automation

Categories

[Search within category]

A Fully Integrated Stretchable Sensor Arrays for Wearable Sign Language Translation To Voice

UCLA researchers in the Department of Bioengineering have developed a novel machine learning assisted wearable sensor system for the direct translation of sign language into voice with high performance.

Autonomous Comfort Systems Via An Infrared-Fused Vision-Driven Robotic Systems

Robotic comfort systems have been developed which use fans to deliver heated/cooling air to building occupants to provide greater levels of personal comfort.  However, current robotic systems rely on surveys asking individuals about their comfort state through a web interface or app.  This reliance on user feedback becomes impractical due to survey fatigue on the part of the user.  Researchers at the University of California, Berkeley have developed a system which uses a visible light camera located on the nozzle of a robotic fan to detect human facial features (e.g., eyes, nose, and lips).  Images from a co-located thermal camera are then registered onto the visible light image and temperatures of different facial features are captured and used to infer the comfort state of the individual.  Accordingly, the fan/heater system blows air with a specific velocity and temperature toward the occupant via a closed-loop feedback control.  Since the system can track a person in an environment, it addresses issues with prior data collection systems that needed occupants to be positioned in a specific location.

Microfluidic Dispenser for Automated, High-Precision, Liquids Handling

Researchers at the University of California, Davis have developed a robotic dispensing interface that uses a microfluidic-embedded container cap – often referred to as a microfluidic Cap-to-Dispense or μCD - to seamlessly integrate robotic operations into precision liquids handling.

Training Platform for Transoral Robotic Surgery

UCLA researchers in the Departments of Bioengineering and Head & Neck Surgery have developed a novel robotic platform for the training of transoral surgery.

Predictive Controller that Optimizes Energy and Water Used to Cool Livestock

Researchers at the University of California, Davis have developed a controller that applies environmental data to optimizing operations of livestock cooling equipment.

Smart Dialysis Catheter

UCLA researchers in the Department of Cardiology at UCLA’s David Geffen School of Medicine have developed a smart dialysis catheter that can measure different patient vitals in real-time to prevent hospitalizations due to renal failure.

3D Printed Normal Force Sensor

UCLA researchers in the Department of Bioengineering have developed a novel 3D printing method that produces customizable normal force sensors for robotic surgical applications at high speed and low cost.

Soft Shear Force Resistive Sensor Embedded Artificial Skin

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a bioinspired, thin and flexible liquid metal filled resistive PDMS microchannel shear force sensing skin.

Hypocycloid Torsional Spring

UCLA Researchers in the Department of Mechanical and Aerospace Engineering have developed a spring device capable of outperforming the current gold standard of actuators seen in humanoid robots.

Augmented Reality For Time-Delayed Telsurgical Robotics

Teleoperation brings the advantage of remote control and manipulation to distant locations or harsh or constrained environments. The system allows operators to send commands from a remote console, traditionally called a master device, to a robot, traditionally called a slave device, and offers synchronization of movements. This allows the remote user to operate as if on-site, making teleoperational systems an ideal and often only solution to a wide range of applications such as underwater exploration, space robotics, mobile robots, and telesurgery. The main technical challenge in realizing remote telesurgery (and similarly, all remote teleoperation) is the latency from the communication distance between the master and slave. This delay causes overshoot and oscillations in the commanded positions, and are observable and statistically significant in as little as 50msec of round trip communication delay. Predictive displays are virtual reality renderings, generally designed for space operations, that show a prediction of the events to follow in a short amount of time. It can be used to overcome the negative effects of delay by giving the operator immediate feedback from a predicted environment. Furthermore, it does not suffer stability issues that arise with delayed haptic feedback. Early predictive displays included manipulation of the Engineering Test Satellite 7 from ground control where the round trip delay can be up to 7sec and Augmented Reality (AR) rendering where the prediction is overlaid on raw image data. These strategies can be applied to telesurgery, but require overcoming the unique challenges in calculating and tracking the 3D environment for a full environment prediction, which includes non-rigid material such as tissue. Furthermore, prior work in the surgical robotics community highlights the need for active tracking rather than only relying on kinematic calibrations to localize the slave due to the millimeter scale of a surgical operation and the often utilized cable driven actuation.

Accurate and Secure Navigation for Autonomous Vehicles

While cellular phone networks are not designed for navigation, they are abundant in urban environments which are known to challenge GPS signals.  University of California, Riverside researchers integrated signals-of-opportunity from mobile phone networks to provide autonomous vehicles with precise navigational information.

Soft Burrowing Robot for Simple & Non-Invasive Subterranean Locomotion

A soft robot that can successfully burrow through sand and dirt, similar to a plant root.

Hydraulically Actuated Textiles

A soft, planar, actuator based on hydraulically actuated textiles.

Method To Determine Personalized Transcranial Magnetic Stimulation (Tms) Parameters To Enhance Clinical Treatment Outcomes In Major Depression And Neurological Disorders

Researchers led by Aimee Hunter from the Department of Psychaitry at UCLA have developed a methodology to determine parameters for personalized transcranial magnetic stimulation to treat depression.

Actively Controlled Microarchitectures with Programmable Bulk Material Properties

Professor Jonathan Hopkins and colleagues have developed amechanical programmable metamaterial consisting of an array of actively, independently controlled micro-scale unit cells. This technology allows for the application of materials which have instantly changeable, programmable properties that can exceed those of conventional, existing materials.

An Actuator Device Driven By Electrostatic Forces

Researchers in the UCLA Department of Materials Science and Engineering have developed an electrostatically actuated device with reversible high-frequency operation that consumes low power and has low fabrication costs.

Quality interference from living digital twins in IoT-enabled manufacturing systems

Researchers at UCI have developed a non-intrusive method for building a virtual replica of manufacturing machine, which allows for accurate diagnostics of the state of the system. This provides manufacturers with real-time information on quality control and immediately identifies any malfunctions in the system.

System And Method For Automated Image Guided Robotic Intraocular Surgery

UCLA researchers in the Departments of Mechanical Engineering and Ophthalmology have developed a system and method for automated optical surgery.

Rapid And Precise Tool Exchange Mechanism For Intraocular Robotic Surgical Systems

UCLA researchers from the Department of Mechanical Engineering have developed a rapid, precise, and repeatable tool exchange mechanism for intraocular surgical procedures. This mechanism reduces surgery time, undesirable surgical tool movements, complications, and recovery time.

Dextrous Hand Exoskeleton

Researchers led by Professor Jacob Rosen from the Department of Mechanical and Aerospace Engineering at UCLA have developed a novel hand exoskeleton that provides sensory information to the user.

Balloon Robot

The Hong group at UCLA has developed a bi-pedal robot that incorporates multiple gas-filled balloons to provide support and balance.

  • Go to Page: