Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Semiconductors > Materials

Categories

[Search within category]

Controlling Linearity in N-Polar GaN MISHEMTs

Brief description not available

Enhanced Block Copolymer Self-Assembly

Brief description not available

Reticulation Of Macromolecules Into Crystalline Networks

Covalent organic frameworks (COFs) are 2D or 3D extended periodic networks assembled from symmetric, shape persistent molecular 5 building blocks through strong, directional bonds. Traditional COF growth strategies heavily rely on reversible condensation reactions that guide the reticulation toward a desired thermodynamic equilibrium structure. The requirement for dynamic error correction, however, limits the choice of building blocks and thus the associated mechanical and electronic properties imbued within the periodic lattice of the COF.   UC Berkeley researchers have demonstrated the growth of crystalline 2D COFs from a polydisperse macromolecule derived from single-layer graphene, bottom-up synthesized quasi one-dimensional (1D) graphene nanoribbons (GNRs). X-ray scattering and transmission electron microscopy revealed that 2D sheets of GNR-COFs self-assembled at a liquid-l quid interface stack parallel to the layer boundary and exhibit an orthotropic crystal packing. Liquid-phase exfoliation of multilayer GNR-COF crystals gave access to large area bilayer and trilayer cGNR-COF films. The functional integration of extended 1D materials into crystalline COFs greatly expands the structural complexity and the scope of mechanical and physical materials properties.

Rheological Tuning of the Crystal Growth

Solutions of shear-thinning polymers are known to decrease in viscosity as a shear force is applied to the solution. In this work, the inventors show that by pre-shearing a shear-thinning polymer solution mixed with a precursor solution of a semiconducting crystal we can tune the size and morphology of the growing crystals, which governs the optoelectronic properties of the formed crystals. By pre-shearing the solution we are able to lower the viscosity of the solution, which plays a key role in the liquid phase processing (eg., coating processes). By forming a thinner, low-viscosity coating, we are able to tune the nucleation and growth rate of the crystals to form crystals that are smaller and more uniformly distributed in size, leading to a uniform and conformal coating. This approach allows us to coat a uniform layer of semiconducting crystals, which is necessary for developing functional optoelectronic devices.

Low Band Gap Graphene Nanoribbon Electronic Devices

This invention creates a new graphene nanoribbons (GNR)-based transistor technology capable of pushing past currently projected limits in the operation of digital electronics for combining high current (i.e. high speed) with low-power and high on/off ratio. The inventors describe the design and synthesis of molecular precursors for low band gap armchair graphene nanoribbons (AGNRs) featuring a width of N=11 and N=15 carbon atoms, their growth into AGNRs, and their integration into functional electronic devices (e.g. transistors). N is the number of carbon atoms counted in a chain across the width and perpendicular to the long axis of the ribbon.

High Thermal Conductivity Boron Arsenide For Thermal Management, Electronics, And Photonics Applications

UCLA researchers in the Department of Mechanical & Aerospace Engineering have developed a novel boron arsenide (BAs) material that has an ultra-high thermal conductivity of 1300 W/mK and low cost of synthesis and processing.

Selective Deposition Of Diamond In Thermal Vias

UCLA researchers in the Department of Materials Science & Engineering have developed a new method of diamond deposition in integrated circuit vias for thermal dissipation.

Wafer Bonding for Embedding Active Regions with Relaxed Nanofeatures

An alternative method, using wafer bonding, to connect relaxed nanostructures in the active region with separately grown material.

Synthesis Of Heteroatom Containing Polycyclic Aromatic Hydrocarbons

UCLA researchers in the Department of Chemistry & Biochemistry have developed an approach for synthesizing nitrogen-containing polycyclic aromatic hydrocarbons with high yield.

Soft Burrowing Robot for Simple & Non-Invasive Subterranean Locomotion

A soft robot that can successfully burrow through sand and dirt, similar to a plant root.

Hydraulically Actuated Textiles

A soft, planar, actuator based on hydraulically actuated textiles.

Simple and Effective Strategy for Optical Band Gap Control in Conjugated Oligomers and Polymers

Researchers have demonstrated the ability to modulate the electronic properties of a conjugated molecule via interaction with Lewis acids that bind a basic site in the molecule.

A Plastic Synapse Based on Self-Heating-Enhanced Charge-Trapping in High-K Gate Dielectrics of Advanced-Node Transistors

UCLA researchers in the Department of Electrical Engineering and Computer Science have developed a novel way of implementing plastic synapses for neuromorphic systems applications by using charge-trapping advanced-node transistors.

Controlling Magnetization Using Patterned Electrodes on Piezoelectrics

UCLA researchers in the Department of Materials Science and Engineering have developed a novel piezoelectric thin film that can control magnetic properties of individual magnetic islands.

Refreshable Tactile Display Using Bistable Electroactive Polymer

Researchers in the UCLA Department of Materials Science and Engineering have developed a high resolution, refreshable, and low-cost pneumatic tactile interactive device with a compact structure, single fluidic reservoir, and high actuator density that exerts large stroke and provides high blocking force.

Graphene-Polymer Nanocomposite Incorporating Chemically Doped Graphene-Polymer Heterostructure for Flexible and Transparent Conductive Films

UCLA researchers in the Department of Electrical Engineering have invented a novel graphene-polymer nanocomposite material for flexible transparent conductive electrode (TCE) applications.

Electrical Conduction In A Cephalopod Structural Protein

Fabricating materials from naturally occurring proteins that are inherently biocompatible enables the resulting material to be easily integrated with many downstream applications, ranging from batteries to transistors. In addition, protein-based materials are also advantageous because they can be physically tuned and specifically functionalized. Inventors have developed protein-based material from structural proteins such as reflectins found in cephalopods, a molluscan class that includes cuttlefish, squid, and octopus. In a space dominated by artificial, man-made proton-conducting materials, this material is derived from naturally occurring proteins.

A Low-Cost-Wafer-Level Process For Packaging MEMS 3-D Devices

A low-cost solution to robust electronic packaging of 3-D MEMS devices using micro-glassblown “bubble-shaped” structures.

Trademark: Flexible Fan Out Wafer Processing And Structure: Flextrate

UCLA researchers in the Department of Electrical Engineering have invented a novel biocompatible flexible device fabrication method using fan-out wafer level processing (FOWLP).

Highly wrinkled metal thin films using lift-off layers

Wearable electronics are becoming a popular way of integrating personal healthcare with continuous, remote health monitoring, yet current devices are bulky and exhibit poor electronic performance. Wrinkled metal thin films can be utilized for their thin, flexible profiles, which conform well to the skin. Researchers at UCI have developed a novel method using specialized materials that results in wrinkled metal thin films that have enhanced mechanical and electrical performance.

Apparatus and Method for 2D-based Optoelectronic Imaging

The use of electric fields for signaling and manipulation is widespread, mediating systems spanning the action potentials of neuron and cardiac cells to battery technologies and lab-on-a-chip devices. Current FET- and dye-based techniques to detect electric field effects are systematically difficult to scale, costly, or perturbative. Researchers at the University of California Berkeley have developed an optical detection platform, based on the unique optoelectronic properties of two-dimensional materials that permits high-resolution imaging of electric fields, voltage, acidity, strain and bioelectric action potentials across a wide field-of-view.

A New Methodology for 3D Nanoprinting

Researchers at the University of California, Davis have discovered a novel protocol to enable 3D printing with nanometer precision in all three dimensions using polyelectrolyte (PE) inks and atomic force microscopy.

Hybrid Molecule Nanocrystal Photon Upconversion

Background: Solar resources are at a premium and the solar energy industry is a $130B market with growth projects of 30%. High demands for attaining renewable energy efficiently and cost-effectively, along with government incentives, are all good indicators for finding innovative ways to optimize solar energy systems.  Brief Description: Traditional semiconducting materials, i.e. silicon and cadmium telluride are unable to absorb all wavelengths of light and become usable energy. UCR researchers were able to functionalize semiconducting nanocrystals that are very efficient in upconverting near infrared photons into higher energy photons. They have optimized upconversion through carefully formulated combinations of semiconductor nanocrystals and organic ligands to enhance upconversion emission by up to 3 orders of magnitude relative to nanocrystals alone. This provides a way to enhance the efficiency of photovoltaic cells and reduce solar electricity costs.

  • Go to Page: