Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Materials & Chemicals > Composites


[Search within category]

Physical Multi-Layer Arm Phantom For Body Area Networks

Researchers at UCI have developed an oil-based in vitro phantom that accurately mimics the electrical properties of the human arm. Due to the increased accuracy it affords, this phantom can be used to test the efficiencies of wireless medical devices in body area networks.

High Stability PtNiX-M Electrochemical Catalyst

UCLA researchers in the Department of Material Science and Engineering have invented a novel and highly stable platinum-based catalyst material for fuel cell technologies.

Highly Ductile And Durable Double-Network Based Cementation – “D3 Cement” By Using Self-Healing Organic-Inorganic Double Network

UCLA researchers in the Department of Materials Science and Engineering have developed a self-healing cementing material with high ductility and durability.

High Performance PtNiCuMo Electrochemical Catalyst

UCLA researchers in the Department of Materials Science and Engineering have developed multimetallic PtNiCuMo nano octahedral catalyst that has demonstrated greatly improved mass activity, specific activity, and stability for application in fuel cells.

Graphene-Polymer Nanocomposite Incorporating Chemically Doped Graphene-Polymer Heterostructure for Flexible and Transparent Conductive Films

UCLA researchers in the Department of Electrical Engineering have invented a novel graphene-polymer nanocomposite material for flexible transparent conductive electrode (TCE) applications.

Quasi Van Der Walls Epitaxy Of GaAs on Graphene

UCLA researchers in the Department of Electrical Engineering have developed a novel method of Quasi Van der Waals epitaxial growth of GaAs on Si using graphene as a buffer layer.

Scalable And Inexpensive Production Of Polymer-Metal Nanocomposite By Thermal Drawing

UCLA researchers have developed a fabrication process for uniformly distributing metallic nanoparticles within polymer fibers.

Composite Foam

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a novel composite foam for impact applications.

Robust Mesoporous Nife-Based Catalysts For Energy Applications

UCLA researchers in the Department of Chemistry and Biochemistry have used selective dealloying method to produce novel high-performance, robust, and ultrafine mesoporous NiFeMn-based metal/metal oxide composite oxygen-evolving catalysts.

3D Printer with Improved Selective Laser Sintering (SLS)

Three dimensional (3D) printer and rapid prototyping (RP) systems are currently used to quickly produce objects and to prototype parts using CAD tools. Most RP systems use an additive, layer-by-layer approach to building parts by joining liquid, powder, or sheet materials to form physical objects. Some of these RP systems through selective laser sintering amalgamate materials by heating them with lasers to generate 3D printed objects. Researchers at the University of California, Irvine have created a new 3D printer with improved selective laser sintering. The new 3D printer and process varies the composition of the materials in a 3D printed object thus creating an object with enhanced strength, conductivity, heat resistance and other enhancing properties.

Transparent Bulk Photoluminescent Quantum Dots/Polymer Nanocomposite

UCLA researchers in the Department of Materials Science and Engineering have developed highly transparent, photoluminescent nanocomposites containing record-high levels of quantum dots.

Architected Material Design For Seismic Isolation

Just in the Los Angeles area alone, USGS database shows a 95.23% change of a major earthquake occurring. While there are a variety of seismic devices already installed for the protection of high value structures, other customizable, cost efficient devices currently don’t exist for a wide range of other structures such as apartments, residential homes, or event moderate to high value equipment and artifacts. University of California has invented a novel material and method for creating cost efficient seismic protection devices for all types of such structures.

Multifunctional Cement Composites With Load-Bearing And Self-Sensing Properties

As improvements in technology allow for construction of bigger, more uniquely designed skyscrapers, bridges, and motorways that can carry greater loads and are seismically sound, current cement composites are being pushed to their performance limits. Now more than ever, assessing damage to cement composite structures is of integral importance. However, traditional methods can be destructive, subjective, and may not detect previously existing damage, which can be invisible to the naked eye or hidden beneath structural surfaces. Addition of conductive additives, such as carbon nanotubes (CNTs) to cementitious composites attributes both load-bearing and damage self-sensing properties to the composites. However, current formulations and methods for producing these multifunctional cement composites require specialized equipment, are labor, time, and capital intensive, and are not scalable.

Novel Anti-Bacterial, Anti-Fungal Nanopillared Surface

Medical devices are susceptible to contamination by harmful microbes, such as bacteria and fungi, which form biofilms on device surfaces. These biofilms are often resistant to antibiotics and other current treatments, resulting in over 2 million people per year suffering from diseases related to these contaminating microbes. Death rates for many of these diseases are high, often exceeding 50%. Researchers at UCI have developed a novel anti-bacterial and anti-fungal biocomposite that incorporates a nanopillared surface structure that can be applied as a coating to medical devices.

Biomass-Derived Polymers And Copolymers Incorporating Monolignols And Their Derivatives

UCLA researchers in the Departments of Bioengineering, Chemistry and Biochemistry have developed a novel synthetic strategy for the fabrication of biomass-derived polymers incorporating underutilized lignin derivatives.

Concentration Of Nanoparticles By Zone Heating Method

UCLA researchers in the Department of Mechanical and Aerospace Engineering have invented a novel method to concentrate nanoparticles (NPs) into metal crystals via zone melting.

A Multiferroic Transducer For Audio Applications

Researchers in the Department of Mechanical Engineering at UCLA have developed a novel transducer for audio applications based on a multiferroic material.

Hyperelastic Binder For Printed, Stretchable Electronics

Stretchable electronics are a new, emerging class of electronic devices that can conform to complex non-planar and deformable surfaces such as human organs, textiles, and robotics. Functional fillers incorporated with elastic polymers form composites for use in intrinsically stretchable electronics. These composites can be amenable to high-throughput, low-cost, additive printing technologies that include screen, inkjet, flexography, and 3D printing. However, the properties of the functional and elastic materials used to date have been mutually antagonistic, thus limiting achievement of state-of-the-art functional properties and high elasticity. The present invention relates to the development of random composite inks using triblock copolymer for stretchable electronics. The key novelty offered here is the ability to tolerate higher loadings of inelastic, functional materials without sacrificing the elastic properties of the ink.

Thermally Stable Silver Nanowire Transparent Electrode

UCLA researchers in the Department of Materials Science and Engineering have developed a novel transparent and flexible electrode material for optoelectronic device applications.

Evaporation-Based Method For Manufacturing And Recycling Of Metal Matrix Nanocomposites

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a new method to manufacture and recycle metal matrix nanocomposites.

Silver Nanowire-Indium Tin Oxide Nanoparticle As A Transparent Conductor For Optoelectronic Devices

UCLA researchers in the Department of Materials Science and Engineering have developed a novel composite material made of metal oxide nanoparticles (NPs) and silver nanowires (AgNWs).

Shape Reconfigurable Materials And Structures For Shape Morphing, Energy Absorption And Tunable Phononic

The invention is a structured material that can be reshaped into multiple stable configurations. The material can be used to create highly adaptable components that can be reconfigured on demand, or absorb energy and vibrations.

Method For Imaging Neurotransmitters In Vitro and In Vivo Using Functionalized Carbon Nanotubes

Neurotransmitters play a central role in complex neural networks by serving as chemical units of neuronal communication.  Quantitative optical methods for the detection of changes in neurotransmitter levels has the potential to profoundly increase our understanding of how the brain works. Therapeutic drugs that target neurotransmitter release are used ubiquitously to treat a vast array of brain and behavioral disorders.  For example, new methods in this sphere could provide a new platform by which to validate the function of drugs that alter modulatory neurotransmission, or to screen antipsychotic and antidepressant drugs.  However, currently in neuroscience, few optical methods exist that can detect neurotransmitters with high spatial and temporal resolution in vitro or in vivo.  Brain tissue also readily scatters visible wavelengths of light currently used to perform biological imaging, and neuronal tissue and has an abundance of biomolecules that are chemically or structurally similar and therefore hard to specifically distinguish.  Furthermore, neurotransmission relevant processes occur at challenging spatial  and temporal scales.    UC Berkeley investigators have developed polymer-functionalized carbon nanotubes for in vitro and in vivo quantification of extracellular modulatory neurotransmitter levels using optical detectors. The method uses the fluorescent optical properties of polymer-functionalized carbon nanotubes to selectively report changes in concentration of specific neurotransmitters. The scheme is novel in that the detection method applies to wide variety of specific neurotransmitters, it is an optical method and therefore gives greater spatial information, and enables the potential for imaging of one or more neurotransmitters. The optical method also produces less damage to the surrounding tissue than methods that implant electrodes or cells and allows high resolution localization with other methods of optical investigation. The invention takes advantage of favorable fluorescence properties of carbon nanotubes, such as carbon nanotube emission in the near infrared and infinite fluorescence lifetime.  The near infrared emission scatters less than shorter wavelengths, enabling greater signal recovery from deeper tissue, and allows greater compatibility with other techniques. The optical properties also enable long term potentially even chronic use. 

An Aza-Diels-Alder Approach To Polyquinolines

The invention is a simple and inexpensive synthetic approach to a diverse library of new polymeric materials with a host of useful and unique properties. Most notably, these materials can serve as precursors to rationally designed and bottom-up synthesized graphene nanoribbons (GNRs), including N-doped GNRs and GNRs with precisely defined and functionalized edges.

Chemically Modified Surfaces With Self Assembled Aromatic Functionalities

The invention is a method for mild and facile chemical modification of electroactive surfaces that permits tailoring of their physical properties and protects against corrosion.

  • Go to Page: