Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Materials & Chemicals > Composites

Categories

[Search within category]

Architected Material Design For Seismic Isolation

Just in the Los Angeles area alone, USGS database shows a 95.23% change of a major earthquake occurring. While there are a variety of seismic devices already installed for the protection of high value structures, other customizable, cost efficient devices currently don’t exist for a wide range of other structures such as apartments, residential homes, or event moderate to high value equipment and artifacts. University of California has invented a novel material and method for creating cost efficient seismic protection devices for all types of such structures.

Multifunctional Cement Composites With Load-Bearing And Self-Sensing Properties

As improvements in technology allow for construction of bigger, more uniquely designed skyscrapers, bridges, and motorways that can carry greater loads and are seismically sound, current cement composites are being pushed to their performance limits. Now more than ever, assessing damage to cement composite structures is of integral importance. However, traditional methods can be destructive, subjective, and may not detect previously existing damage, which can be invisible to the naked eye or hidden beneath structural surfaces. Addition of conductive additives, such as carbon nanotubes (CNTs) to cementitious composites attributes both load-bearing and damage self-sensing properties to the composites. However, current formulations and methods for producing these multifunctional cement composites require specialized equipment, are labor, time, and capital intensive, and are not scalable.

Novel Anti-Bacterial, Anti-Fungal Nanopillared Surface

Medical devices are susceptible to contamination by harmful microbes, such as bacteria and fungi, which form biofilms on device surfaces. These biofilms are often resistant to antibiotics and other current treatments, resulting in over 2 million people per year suffering from diseases related to these contaminating microbes. Death rates for many of these diseases are high, often exceeding 50%. Researchers at UCI have developed a novel anti-bacterial and anti-fungal biocomposite that incorporates a nanopillared surface structure that can be applied as a coating to medical devices.

Biomass-Derived Polymers And Copolymers Incorporating Monolignols And Their Derivatives

UCLA researchers in the Departments of Bioengineering, Chemistry and Biochemistry have developed a novel synthetic strategy for the fabrication of biomass-derived polymers incorporating underutilized lignin derivatives.

Concentration Of Nanoparticles By Zone Heating Method

UCLA researchers in the Department of Mechanical and Aerospace Engineering have invented a novel method to concentrate nanoparticles (NPs) into metal crystals via zone melting.

A Multiferroic Transducer For Audio Applications

Researchers in the Department of Mechanical Engineering at UCLA have developed a novel transducer for audio applications based on a multiferroic material.

Hyperelastic Binder For Printed, Stretchable Electronics

Stretchable electronics are a new, emerging class of electronic devices that can conform to complex non-planar and deformable surfaces such as human organs, textiles, and robotics. Functional fillers incorporated with elastic polymers form composites for use in intrinsically stretchable electronics. These composites can be amenable to high-throughput, low-cost, additive printing technologies that include screen, inkjet, flexography, and 3D printing. However, the properties of the functional and elastic materials used to date have been mutually antagonistic, thus limiting achievement of state-of-the-art functional properties and high elasticity. The present invention relates to the development of random composite inks using triblock copolymer for stretchable electronics. The key novelty offered here is the ability to tolerate higher loadings of inelastic, functional materials without sacrificing the elastic properties of the ink.

Thermally Stable Silver Nanowire Transparent Electrode

UCLA researchers in the Department of Materials Science and Engineering have developed a novel transparent and flexible electrode material for optoelectronic device applications.

Evaporation-Based Method For Manufacturing And Recycling Of Metal Matrix Nanocomposites

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a new method to manufacture and recycle metal matrix nanocomposites.

Silver Nanowire-Indium Tin Oxide Nanoparticle As A Transparent Conductor For Optoelectronic Devices

UCLA researchers in the Department of Materials Science and Engineering have developed a novel composite material made of metal oxide nanoparticles (NPs) and silver nanowires (AgNWs).

Shape Reconfigurable Materials And Structures For Shape Morphing, Energy Absorption And Tunable Phononic

The invention is a structured material that can be reshaped into multiple stable configurations. The material can be used to create highly adaptable components that can be reconfigured on demand, or absorb energy and vibrations.

Method For Imaging Neurotransmitters In Vitro and In Vivo Using Functionalized Carbon Nanotubes

Neurotransmitters play a central role in complex neural networks by serving as chemical units of neuronal communication.  Quantitative optical methods for the detection of changes in neurotransmitter levels has the potential to profoundly increase our understanding of how the brain works. Therapeutic drugs that target neurotransmitter release are used ubiquitously to treat a vast array of brain and behavioral disorders.  For example, new methods in this sphere could provide a new platform by which to validate the function of drugs that alter modulatory neurotransmission, or to screen antipsychotic and antidepressant drugs.  However, currently in neuroscience, few optical methods exist that can detect neurotransmitters with high spatial and temporal resolution in vitro or in vivo.  Brain tissue also readily scatters visible wavelengths of light currently used to perform biological imaging, and neuronal tissue and has an abundance of biomolecules that are chemically or structurally similar and therefore hard to specifically distinguish.  Furthermore, neurotransmission relevant processes occur at challenging spatial  and temporal scales.    UC Berkeley investigators have developed polymer-functionalized carbon nanotubes for in vitro and in vivo quantification of extracellular modulatory neurotransmitter levels using optical detectors. The method uses the fluorescent optical properties of polymer-functionalized carbon nanotubes to selectively report changes in concentration of specific neurotransmitters. The scheme is novel in that the detection method applies to wide variety of specific neurotransmitters, it is an optical method and therefore gives greater spatial information, and enables the potential for imaging of one or more neurotransmitters. The optical method also produces less damage to the surrounding tissue than methods that implant electrodes or cells and allows high resolution localization with other methods of optical investigation. The invention takes advantage of favorable fluorescence properties of carbon nanotubes, such as carbon nanotube emission in the near infrared and infinite fluorescence lifetime.  The near infrared emission scatters less than shorter wavelengths, enabling greater signal recovery from deeper tissue, and allows greater compatibility with other techniques. The optical properties also enable long term potentially even chronic use. 

An Aza-Diels-Alder Approach To Polyquinolines

The invention is a simple and inexpensive synthetic approach to a diverse library of new polymeric materials with a host of useful and unique properties. Most notably, these materials can serve as precursors to rationally designed and bottom-up synthesized graphene nanoribbons (GNRs), including N-doped GNRs and GNRs with precisely defined and functionalized edges.

Chemically Modified Surfaces With Self Assembled Aromatic Functionalities

The invention is a method for mild and facile chemical modification of electroactive surfaces that permits tailoring of their physical properties and protects against corrosion.

Pyrite Shrink-Wrap Laminate As A Hydroxyl Radical Generator

The invention is a diagnostic technology, as well as a research and development tool. It is a simple, easy to operate, and effective platform for the analysis of pharmaceuticals and biological species. Specifically, this platform generates hydroxyl radicals for oxidative footprinting – a technique commonly employed in protein mapping and analysis. The platform itself is inexpenisve to fabricate, scalable, and requires nothing more than an ordinary pipet to use. In addition, it is highly amenable to scale-up, multiplexing, and automation, and so it holds promise as a high-throughput method for mapping protein structure in support of product development, validation, and regulatory approval in the protein-based therapeutics industry.

Fast Micro- or Nano-scale Resolution Printing Methods and Apparatus

Fast, affordable three-dimensional printing or 3D manufacturing at micron or nano-scale is a holy grail for many high-tech industries. Current state of the art has generally been limited to smallest feature sizes in the 5-10 micron range, with metal-based 3D printer systems held at 100 microns. Another problem is 3D printers are limited to polymer media or require large laser sources. To address these issues, researchers at the University of California, Berkeley, have developed methods and devices to efficiently deposit desirable constituent materials (e.g. metallic, semiconducting, insulating, etc.) with precise micron and nano-scale resolution and without expensive laser requirements. These methods show promise in terms of fast sub-5 micron print speeds, material versatility, and structure sophistication. This is an entirely new fabrication tool, which is unencumbered by the limitations of existing 3D print-like functions, paving the way to arbitrary 2D and 3D nanoscale structures and devices that cannot be fabricated in any other way.

Multifunctional Cement Composites with Load-Bearing and Self-Sensing Properties

This invention consists of a rapid, simplified, lower-cost method for production of a cement composite with enhanced load-bearing and damage detecting properties.

Durable, Plasticization-Resistant Membranes using Metal-Organic Frameworks

Over the last several decades, polymer membranes have shown promise for purifying various industrial gas mixtures. However, there are a number of potential applications in which highly polarizable gases (e.g., CO2, C3H6, C3H8, butenes, etc.) diminish membrane selectivities through the mechanism of plasticization. Plasticization is the swelling of polymer films in the presence of certain penetrants that results in increased permeation rates of all gases, but an unwanted, and often times, unpredictable loss in membrane efficiency. Current strategies for reducing plasticization effects often result in a reduction in membrane permeability. To address the need for plasticization-resistant membranes that retain good separation performance, researchers at UC Berkeley have developed a novel method for improving polymer membrane stability and performance upon the incorporation of metal-organic frameworks (MOFs). This method can be applied to a broad range of commercially available polymers as well as enable new polymers to be commercialized.

High Performance, Rare Earth-free Supermagnetostrictive Structures and Materials

Magnetostrictive materials convert magnetic fields into mechanical strain and vice versa. They are widely used in sensors, actuators, electrical motors and other technological devices. The materials currently used for these applications are relatively inefficient (e.g. nickel or iron-aluminum alloys) or are very expensive (e.g. Terfenol-D). To address these challenges, researchers at the University of California, Berkeley, have developed a process framework using incipient martensitic transformations to achieve useful magnetostriction in relatively inexpensive materials. Early laboratory models suggest the Berkeley materials have comparable behavior to rare earth-based counterparts, with preliminary data to suggest superior performance than both rare earth-based and rare earth-free materials on the market today.

Process for the Fabrication of Nanostrucured Arrays on Flexible Polymer Films

The technology is a process for making arrays of nanostructures on polymer films.It features a two step process for creating thin polymer films with unique optical and wetting properties that can be used for coating both planar and curved surfaces.It is possible to implement this process in a mass fabrication process over large areas.

Composition Structure with Tessllated Layers

The technology is a tessellated composite structure that is resistant to tearing and fatigue.It features improved resistance to tearing and fatigue damage and is biased towards compression stress, as opposed to tensile stress.

Processing Spinel-Less Thermal Barrier Coating Systems

This invention, intended for use in the processing of turbine engine blades’ thermal barrier coatings, is a two-step procedure used to produce a thermally grown oxide that is completely devoid of lifetime-limiting spinel oxides. Both steps take place at the same temperature used in present day bond coat pre-oxidation, utilize everyday gases, and can be performed serially in the same furnace, in a matter of hours. In step one, pre-oxidation of a bond-coated blade yields a thermally grown oxide (TGO) layer that contains a limited amount of spinel. In step two, all spinel is removed in situ. In an industrial-scale setup, the entire process would take place in less than 24 hours, including ramp times to and from the exposure temperature. Once blade specimens are cooled and removed from the furnace, they are then ready to be coated with the thermally protective yttria-stabilized zirconia (YSZ) layer, using industry-standard techniques. Due to the nature of the process, no new spinel is expected to grow at the critical TGO–YSZ interface for as long as the part operates in service, which means that the blade will be completely spinel-less for its entire usable lifetime. By eliminating all spinel-related failure mechanisms, this may result in longer blade lifetimes and therefore significant cost reduction.

Devices and Methods for 3D Printing of Highly Ordered Composite Materials

A synthesis technique for the precise and tunable ordering of anisotropic particles in composite materials. 

Low-Pressure High-Capacity Storage System for Sustainable Hydrogen Economy

Hydrogen-fueled cell vehicles could gain ground as global researchers develop better processes to produce hydrogen economically from sustainable resources like solar and wind. On an energy-to-weight basis, hydrogen has nearly three times the energy content of gasoline (120 megajoule or MJ, per kilogram or kg, for hydrogen, versus 44 MJ/kg for gasoline). One problem is storing enough hydrogen on-board to achieve a reasonable driving range of 300 to 400 miles. On energy-to-volume basis, hydrogen takes up nearly three times the volume of gasoline (8 MJ/liter for cryogenic liquid hydrogen versus 32 MJ/liter for gasoline). Another problem is related to next-generation solid absorbents like metal hydrides, which typically show weakness in terms of the amount of gas that can be absorbed and delivered. To address these problems, researchers at the University of California, Berkeley, and Lawrence Berkeley National Laboratory, have developed a composite material using nanostructured metal hydrides that is capable of storing three times more hydrogen per volume at room temperature than a comparable cryogenic liquid hydrogen tank. Furthermore, low hydrogen pressures during absorbing and desorbing have been achieved. This represents a significant economic and safety advantage over technologically complex and costly high-pressure (10,000 psi) hydrogen tanks commonly used in mobile hydrogen storage applications today.

Novel Quantum Dot Field-Effect Transistors Free of the Bias-Stress Effect

Novel quantum dot field-effect transistors without bias-stress effect that also have high mobility and are environmentally stable.

  • Go to Page: