Browse Category: Engineering > Other

[Search within category]

Compact Series Elastic Actuator Integration

      While robots have proven effective in enhancing the precision and time efficiency of MRI-guided interventions across various medical applications, safety remains a formidable challenge for robots operating within MRI environments. As the robots assume full control of medical procedures, the reliability of their operation becomes paramount. Precise control over robot forces is particularly crucial to ensure safe interaction within the MRI environment. Furthermore, the confined space in the MRI bore complicates the safe operation of human-robot interaction, presenting challenges to maneuverability. However, there exists a notable scarcity of force-controlled robot actuators specifically tailored for MRI applications.       To overcome these challenges, UC Berkeley researchers have developed a novel MRI-compatible rotary series elastic actuator module utilizing velocity-sourced ultrasonic motors for force-controlled robots operating within MRI scanners. Unlike previous MRI-compatible SEA designs, the module incorporates a transmission force sensing series elastic actuator structure, while remaining compact in size. The actuator is cylindrical in shape with a length shorter than its diameter and integrates seamlessly with a disk-shaped motor. A precision torque controller enhances the robustness of the invention’s torque control even in the presence of varying external impedance; the torque control performance has been experimentally validated in both 3 Tesla MRI and non-MRI environments, achieving a settling time of 0.1 seconds and a steady-state error within 2% of its maximum output torque. It exhibits consistent performance across low and high external impedance scenarios, compared to conventional controllers for velocity-sourced SEAs that struggle with steady-state performance under low external impedance conditions.

Low Heat Loss Latent Heat Battery (LHB)

Researchers at the University of California, Davis have developed a green technology designed for the efficient storage and discharge of heat energy sourced from intermittent green energy supplies.

Improved Optical Atomic Clock In The Telecom Wavelength Range

Optical atomic clocks have taken a giant leap in recent years, with several experiments reaching uncertainties at the 10−18 level. The development of synchronized clock networks and transportable clocks that operate in extreme and distant environments would allow clocks based on different atomic standards or placed in separate locations to be compared. Such networks would enable relativistic geodesy, tests of fundamental physics, dark matter searches, and more. However, the leading neutral-atom optical clocks operate on wavelengths of 698 nm (Sr) and 578 nm (Yb). Light at these wavelengths is strongly attenuated in optical fibers, posing a challenge to long-distance time transfer. Those wavelengths are also inconvenient for constructing the ultrastable lasers that are an essential component of optical clocks. To address this problem, UC Berkeley researchers have developed a new, laser-cooled neutral atom optical atomic clock that operates in the telecommunication wavelength band. The leveraged atomic transitions are narrow and exhibit much smaller black body radiation shifts than those in alkaline earth atoms, as well as small quadratic Zeeman shifts. Furthermore, the transition wavelengths are in the low-loss S, C, and L-bands of fiber-optic telecommunication standards, allowing the clocks to be integrated with robust laser technology and optical amplifiers. Additionally, the researchers have identified magic trapping wavelengths via extensive studies and have proposed approaches to overcome magnetic dipole-dipole interactions. Together, these features support the development of fiber-linked terrestrial clock networks over continental distances.

Dissolvable Calcium Alginate Microfibers Produced via Immersed Microfluidic Spinning towards Fabrication of Microfluidic Networks

An innovative technique to produce dissolvable calcium alginate microfibers using an immersed microfluidic spinning process for creating tissue constructs and vascularized tissue implants.

Silicon Solar Cells that Absorb Solar Photons Above 2.2 eV and are Transparent to Solar Photons Below 2.2 eV

Traditionally, land can be used for either crop growth or energy production. This technology optimizes the efficiency of land use by combining both. Researchers at the University of California, Davis have developed solar cell designs that absorb only specific solar photons (> 2.2 eV) to create electricity, while letting through beneficial light (< 2.2 eV) for efficient crop growth.

High-Precision Chemical Quantum Sensing In Flowing Monodisperse Microdroplets

      Quantum sensing is rapidly reshaping our ability to discern chemical processes with high sensitivity and spatial resolution. Many quantum sensors are based on nitrogen-vacancy (NV) centers in diamond, with nanodiamonds (NDs) providing a promising approach to chemical quantum sensing compared to single crystals for benefits in cost, deployability, and facile integration with the analyte. However, high-precision chemical quantum sensing suffers from large statistical errors from particle heterogeneity, fluorescence fluctuations related to particle orientation, and other unresolved challenges.      To overcome these obstacles, UC Berkeley researchers have developed a novel microfluidic chemical quantum sensing device capable of high-precision, background-free quantum sensing at high-throughput. The microfluidic device solves problems with heterogeneity while simultaneously ensuring close interaction with the analyte. The device further yields exceptional measurement stability, which has been demonstrated over >103s measurement and across ~105 droplets.  Greatly surpassing the stability seen in conventional quantum sensing experiments, these properties are also resistant to experimental variations and temperature shifts. Finally, the required ND sensor volumes are minuscule, costing only about $0.63 for an hour of analysis. 

A Combined Raman/Single-Molecule Junction System For Chemical/Biological Analysis

Researchers at the University of California, Davis have developed a device for multi-dimensional data extraction at the molecular level to allow one to simultaneously detect the presence of a single-molecule electrically, and to extract a chemical fingerprint to identify that molecule optically.

Synthesizing Speech From Neural Activity

Researchers at the University of California, Davis have developed a computer-based method to synthesize continuous speech from biosignals, including brain activity, in real-time.

Using Automatic Speech Recognition To Measure The Intelligibility Of Speech Synthesized From Brain Signals

Researchers at the University of California, Davis have developed a computer-based method to evaluate/quantify the intelligibility of speech synthesized by a brain-computer interface or other speech prosthesis.

CoFe-Al2O3 Soft Magnetic Composite

CoFe-Al2O3 is a soft magnetic composite that can be formed using net shape manufacturing and offering superior magnetic, electrical and thermal properties.

DC Circuit Breaker for Emerging Power Systems

Many non-traditional energy sources, such as solar panels, fuel cells, and batteries, supply direct-current (DC) power. This has led to development of DC power systems for a number of applications since conversion to alternating-current (AC) can be eliminated. For example, DC distribution is now used for computer data centers, office buildings, and ship power and propulsion. Though the source, loads, and other components in a DC power system are well understood, there may be interest in innovation with respect to protection schemes since DC systems do not have a zero crossing in its current, and circuit breakers are unable to open up a faulted component without sustaining an arc.

Additive Manufacturing (3-D Printing) Of Standardized 5xxx Series Aluminum

A technology utilizing additive manufacturing (3D-Printing) processes and systems for efficient deposition of standardized aluminum 5xxx series, mitigating defects such as cracks and pores.

Precision 3D Modeling Technology

An innovative technology that uses a device to move any imaging device precisely through a path in 3D space, enabling the generation of high-resolution 3D models.

Enhancing Light-Matter Interactions In Mos2 By Copper Intercalation

Researchers at the University of California, Davis have developed layered 2D MoS2 nanostructures that have their light-interactive properties improved by intercalation with transition and post-transition metal atoms, specifically Copper and Tin.

HyNTP: an Adaptive Hybrid Network Time Protocol for Clock Synchronization in Heterogeneous Distributed Systems

Since the advent of asynchronous packet-based networks in communication and information technology, the topic of clock synchronization has received significant attention due to the temporal requirements of packet-based networks for the exchange of information. In more recent years, as distributed packet-based networks have evolved in terms of size, complexity, and, above all, application scope, there has been a growing need for new clock synchronization schemes with tractable design conditions to meet the demands of these evolving networks. Distributed applications such as robotic swarms, automated manufacturing, and distributed optimization rely on precise time synchronization among distributed agents for their operation. For example, in the case of distributed control and estimation over networks, the uncertainties of packet-based network communication require timestamping of sensor and actuator messages in order to synchronize the information to the evolution of the dynamical system being controlled or estimated. Such a scenario is impossible without the existence of a common timescale among the non-collocated agents in the system. In fact, the lack of a shared timescale among the networked agents can result in performance degradation that can destabilize the system. Moreover, one cannot always assume that consensus on time is a given, especially when the network associated to the distributed system is subject to perturbations such as noise, delay, or jitter. Hence, it is essential that these networked systems utilize clock synchronization schemes that establish and maintain a common timescale for their algorithms. With the arrival of more centralized protocols came motivated leader-less, consensus-based approaches by leveraging the seminal results on networked consensus in (e.g., Cao et al. 2008). More recent approaches (Garone et al. 2015, Kikuya et al. 2017) employ average consensus to give asymptotic results on clock synchronization under asynchronous and asymmetric communication topology. Unfortunately, a high number of iterations of the algorithm is often required before the desired synchronization accuracy is achieved. Furthermore, the constraint on asymmetric communication precludes any results guaranteeing stability or robustness. Lastly, these approaches suffer from over-complexity in term of both computation and memory allocation. Moreover, both synchronous and asynchronous scenarios require a large number of iterations before synchronization is achieved. Finally, the algorithm subjects the clocks to significant non-smooth adjustments in clock rate and offset that may prove undesirable in certain application settings.

System And Method For Tomographic Fluorescence Imaging For Material Monitoring

Volumetric additive manufacturing and vat-polymerization 3D printing methods rapidly solidify freeform objects via photopolymerization, but problematically raises the local temperature in addition to degree-of-conversion (DOC). The generated heat can critically affect the printing process as it can auto-accelerate the polymerization reaction, trigger convection flows, and cause optical aberrations. Therefore, temperature measurement alongside conversion state monitoring is crucial for devising mitigation strategies and implementing process control. Traditional infrared imaging suffers from multiple drawbacks such as limited transmission of measurement signal, material-dependent absorptions, and high background signals emitted by other objects. Consequently, a viable temperature and DOC monitoring method for volumetric 3D printing doesn’t exist.To address this opportunity, UC Berkeley researchers have developed a tomographic imaging technique that detects the spatiotemporal evolution of temperature and DOC during volumetric printing. The invention lays foundations for the development of volumetric measurement systems that uniquely resolve both temperature and DOC in volumetric printing.This novel Berkeley measurement system is envisaged as an integral tool for existing manufacturing technologies, such as computed axial lithography (CAL, Tech ID #28754), and as a new research tool for commercial biomanufacturing, general fluid dynamics, and more.

Advanced Potentiostat

During In the last few decades, the use of miniaturized electrochemical devices has grown rapidly and found diverse applications in scientific and consumer products. The process of developing specialized electrochemical devices is often time-consuming and expensive. Experimental setups involving electrochemistry often use specialized measurement equipment such as a potentiostat. A potentiostat is an analytical instrument that controls the voltage and current between two or more electrodes in a cell. The accuracy, precision, and flexibility of applying or measuring voltages and currents depends on the quality and design of the electronic hardware, which for commercially available potentiostats, often correlate with the device’s cost and architecture. Consequently, one of the challenges faced by today’s electrochemical research community is how to perform modern experimental designs with expensive, asynchronous, and inflexible potentiostats.

Continuous Polyhydroxyalkanoate Production By Perchlorate Respiring Microorganisms

Plastics are essential for the modern world but are also non-sustainable products of the petrochemical industry that negatively impact our health, environment, and food chain. Natural biogenic plastics, such as polyhydroxyalkanoates (PHA), are readily biodegradable, can be produced more sustainably, and offer an attractive alternative. The global demand for bioplastics is increasing with the 2019 market value of $8.3B expected to reach a compound annual growth rate of 16.1% from 2020-2027 (https://www.grandviewresearch.com/industry-analysis/bioplastics-industry). However, current PHA production is constrained by the underlying physiology of the microorganisms which produce them, meaning bioplastic production is currently limited to inefficient, batch fermentation processes that are difficult to scale.To address this problem, UC Berkeley researchers have developed a new system for PHA production wherein the PHA are generated continuously throughout microorganism growth lifecycles. The invention allows these sustainable bioplastics to be produced via precision continuous fermentation technology, a scalable and efficient approach.

Inertial Odometry System and Methods

Although GPS can be used for localization outdoors, indoor environments (office buildings, shopping malls, transit hubs) can be particularly challenging for many of the general population, and especially for blind walkers. GPS-denied environments have received considerable attention in recent years as our population’s digital expectations grow. To address GPS-denied environments, various services have been explored, including technology based on Bluetooth low energy (BLE), Wi-Fi, and camera. Drawbacks with these approaches are common, including calibration (fingerprinting) overhead using Wi-Fi, beacon infrastructure costs using BLE, and unoccluded visibility requirements in camera-based systems. While localization and wayfinding using inertial sensing overcomes these challenges, large errors with accumulated drift are known. Moreover, the decoupling of the orientation of the phone from the direction of walking, as well as accurately detecting walker’s velocity and detecting steps and measuring stride lengths, have also been challenges for traditional pedestrian dead reckoning (PDR) systems. Relatedly, blind walkers (especially those who do not use a dog guide) often tend to veer when attempting to walk in a straight line, and this unwanted veering may generate false turn detections with such inertial methods.

Scalable Temperature Adaptive Radiative Coating With Optimized Solar Absorption

For decades, researchers have been developing “cool roof” materials to cool buildings and save on energy usage from air conditioning. Cool roof materials are engineered to maximize infrared thermal emission, allowing heat to be effectively radiated into outer space and the building to cool down. Conventional cool roof materials emit heat even when it is cold outside, which exacerbates space heating costs and can outweigh energy-saving benefits. A temperature adaptive radiative coating (TARC) material was developed in 2021 that adapts its thermal emittance to ambient temperatures using metal-insulator transitions in vanadium oxide. TARC is projected to outperform existing roof materials in most climate areas, but the complicated structure required high-cost fabrication techniques such as photolithography, pulsed laser deposition, and XeF2 etching, which are not scalable.To address this problem, UC Berkeley researchers have developed a new scalable temperature-adaptive radiative coating (STARC). STARC has the same thermal emittance switching capability as TARC, allowing the thermal emittance to be switched between high- and low- emittance states at a preset temperature. However, STARC can be produced using high-throughput, roll-to-roll methods and low-cost materials. The STARC material also has an improved lifetime. As an added benefit, while cool roof materials are often engineered with uniformly low solar-absorption, the color and solar absorption of STARC can be tuned for aesthetic purposes or to meet local climate-specific needs.

Boost Converter Methods and System

Electric vehicle (EV) energy systems (fuel cell, battery, supercapacitor) demand power conversion technologies that can vary voltage based on the load or state of charge. This means operating in a dynamic operating environment such as supplying energy during acceleration and storing it during braking. DC-DC boost converters are a widely used component in the power systems of EVs to step the voltage between input (supply) to output (load) during charge-discharge periods. Traditional voltage/current controls for DC-DC converters utilize pulse-width modulation (PWM) controls. While PWM has worked well in the past, it lacks practical stability range under uncertain operating parameters due to its reliance on linearized models of DC-DC converter dynamics.

(SD2022-122) Unsupervised channel compression method for low power neural prostheses

Brain machine interfaces (BMIs) have the potential to help individuals with functional impairments, such as loss of motor control, due to neurological disease or spinal cord injury. BMIs map brain signals acquired in relevant brain regions to patient intent to enable functional restoration. In previous studies, BMIs have enabled patients to control robotic arm movements, and type by translating brain signals directly into text.  Intracortical BMIs record and sample brain signals from relevant regions of the brain at rates high enough to process both local field potentials (LFP) and action potentials (spikes).The development of high performance brain machine interfaces (BMIs) requires scaling recording channel count to enable simultaneous recording from large populations of neurons. Unfortunately, proposed implantable neural interfaces have power requirements that scale linearly with channel count. 

Sinusoidal Surface Serrations On A Bio-Inspired Propeller

Currently in the United States, alone there are over 1.6 million drones used for leisure and professional purposes with those number expected to increase greatly by 2024. However, the increase in noise pollution associated with these drones may be detrimental to the environment. Drone associated noise pollution and disturbance may limit the adoption of drones in different applications. One possible solution is to reduce noise from the propellerthrough new propeller designs. UCB researchers have developed a propeller design that can be used in drone propellers that can increase the thrust, improve the power efficiency, and reduce the associated noise emissions in comparison to conventional propeller designs. By extending two-dimensional serrations to a three-dimensional geometry the researchers strengthened the flow distortion and provided more powerful control over the high-frequency noise band in a rotating propeller. 

Efficient Boost/Step-Up Direct Current-Direct Current (DC-DC) Converter

Renewable energy sources such as solar photovoltaics (PV) and wind turbines are used for clean power generation to address the ever-increasing energy consumption. With large-scale integration of renewables, battery storage becomes essential in the grid to meet supply-demand volatility. In these scenarios, direct current (DC) grids offer multiple benefits over alternating current (AC) grids such as, improved efficiency, controllability, reliability and reduced cost. Isolated voltage boost/step-up DC-DC converters are used for interfacing PV and wind energy sources with DC grids and DC-DC converters serve such applications and environments. Existing DC-DC converter designs have known weaknesses. For example, shunt-resonant converter capacitors require a dedicated charging interval in every switching half-cycle, which does not contribute towards energy transfer and results in duty-cycle loss. Since the shunt-resonant capacitor is designed to hold resonant energy sufficient for a rated current condition, resonant energy is fixed for all loading conditions. At reduced loading, reduced resonant energy is sufficient but shunt-configuration has no means to achieve this control. Although this may be mitigated by using two additional switches, this arrangement leads to increased losses and cost. At reduced loading, duty-cycle loss increases significantly because the reduced current results in longer capacitor charging time. This severely restricts the operation range of converter. Smooth current commutation and zero-current-switching (ZCS) are also lost at overload conditions since the capacitor is designed for rated-current condition. The shunt-resonant capacitor is expected to hold its voltage/energy during the operating mode when input inductor charges. However, a leakage path exists through the transformer winding parasitics, which results in capacitor discharge. As a result, the capacitor energy must be overrated to compensate for this loss, which further aggravates all of the aforementioned issues. In another example, series-resonant capacitors must also be charged to a voltage higher than the reflected voltage across the transformer-primary. Peak voltage-rating of primary-side components (e.g., switches and input inductor) is also increased. Series-resonant capacitor also transfers energy to the output during the time interval when resonant current commutation occurs, which requires using capacitors having a higher rating. At reduced loading, the series-resonant capacitor does not have enough voltage to satisfy the resonant condition. Switching frequency may be used as an additional control parameter without using extra switches. Reduction in switching frequency results in increased charging time and hence, higher voltage, while ripple content increases and requires larger filters due to varying switching frequency. Overall, while traditional DC-DC converters like the aforementioned meets some requirements, it may be desirable to have new DC-DC converter approaches to smoothly onboard and operate PV and wind energy production with DC grids.

Fluidic System For The Rotational Cycle-Determined Release Of Liquid From A Chamber In A Rotor

See patent information below. The present invention relates to a fluidic device. More specifically but not exclusively, the present invention relates to serial siphon valves for a fluidic device. Control of the release of liquid from a fluidic chamber via a spinning rotor is a very important function in the area of centrifuged-based fluidic systems for applications such as immunoassays, nucleic acid analysis, biochemical tests, chemical tests and sample preparation. This is because it is often necessary to mix different reagents together at the appropriate time, either in parallel or in series.   It is a non-limiting object of the present invention to provide a method using a co-radial arrangement of siphon structures each separated by a capillary valve in a fluidic system. Such a method allows saving radial space. This saved radial space can be used, for example, to add more features on a fluidic device. It is a non-limiting object of the present invention to provide siphon structures that enable to sequentially distribute liquids in a fluidic system upon successive centripetal accelerations and decelerations applied to a rotary platform. Sequential fluid distribution can be controlled by the length and number of serial siphon structures. It is a non-limiting object of the present invention to provide a device using a co-radial arrangement of siphon structures each separated by a capillary valve in a fluidic system. Such a device allows saving radial space. This saved radial space can be used, for example, to add more features on a fluidic device. 

  • Go to Page: