Browse Category: Engineering > Other

[Search within category]

Organic Crystallinecomposites as New Cryogenic Energy Materials

Researchers at the University of California, Davis have developed a technology that introduces a class of organic compounds capable of releasing clean energy upon cooling to cryogenic temperatures.

Spectral Kernel Machines With Electrically Tunable Photodetectors

       Spectral machine vision collects both the spectral and spatial dependence (x,y,λ) of incident light, containing potentially useful information such as chemical composition or micro/nanoscale structure.  However, analyzing the dense 3D hypercubes of information produced by hyperspectral and multispectral imaging causes a data bottleneck and demands tradeoffs in spatial/spectral information, frame rate, and power efficiency. Furthermore, real-time applications like precision agriculture, rescue operations, and battlefields have shifting, unpredictable environments that are challenging for spectroscopy. A spectral imaging detector that can analyze raw data and learn tasks in-situ, rather than sending data out for post-processing, would overcome challenges. No intelligent device that can automatically learn complex spectral recognition tasks has been realized.       UC Berkeley researchers have met this opportunity by developing a novel photodetector capable of learning to perform machine learning analysis and provide ultimate answers in the readout photocurrent. The photodetector automatically learns from example objects to identify new samples. Devices have been experimentally built in both visible and mid-infrared (MIR) bands to perform intelligent tasks from semiconductor wafer metrology to chemometrics. Further calculations indicate 1,000x lower power consumption and 100x higher speed than existing solutions when implemented for hyperspectral imaging analysis, defining a new intelligent photodetection paradigm with intriguing possibilities.

Passively Powered Device For Lift Enhancement

This invention introduces a unique rotor design for lift enhancement and wingtip vortex elimination without the need for additional power.

Lossless Adjustable Spring/Inerter Mechanism

This technology offers a novel mechanical arrangement for lossless, adjustable operation of springs or inerters.

Broadband and Robust Gyroscopes

This technology encompasses a suite of patents for developing gyroscopes that offer both broad bandwidth and high sensitivity, suitable for a variety of challenging environments.

Isostatic Pressure Spark Plasma Sintering (IP-SPS) Net Shaping Of Components Using Nanostructured Materials

A novel manufacturing process that shapes complex components from nanostructured materials using a combination of pressure, heat, and electricity.

Technique for Safe and Trusted AI

Researchers at the University of California Davis have developed a technology that enables the provable editing of DNNs (deep neural networks) to meet specified safety criteria without altering their architecture.

Photonic Physically Unclonable Function for True Random Number Generation and Biometric ID for Hardware Security Applications

Researchers at the University of California, Davis have developed a technology that introduces a novel approach to hardware security using photonic physically unclonable functions for true random number generation and biometric ID.

Haptic Smart Phone-Cover: A Real-Time Navigation System for Individuals with Visual Impairment

Researchers at the University of California, Davis have developed a haptic interface designed to aid visually impaired individuals in navigating their environment using their portable electronic devices.

Ultra-High Range Resolution Doppler Radar Front End With Quadrature-Less Coherent Demodulation

Researchers at the University of California, Davis have developed a Doppler radar front end to overcome detection nulls without quadrature demodulation.

Architectural And Material Design Aspects For Strong And Tough Interfaces

An innovative approach to joining materials that enhances strength and toughness at interfaces, inspired by natural structures.

Heated Dynamic Headspace Sampling Device for Volatile Organic Compounds (VOCs) from a Surface

Researchers at the University of California, Davis have developed a technology that offers a sophisticated solution for collecting and measuring gas emissions from surfaces, particularly skin, with high sensitivity and specificity.

Mechanical Power Generation Through Passive Radiative Cooling

Researchers at the University of California, Davis have developed an approach to generating mechanical power from the earth's ambient thermal radiation using a Stirling engine.

Compact Series Elastic Actuator Integration

      While robots have proven effective in enhancing the precision and time efficiency of MRI-guided interventions across various medical applications, safety remains a formidable challenge for robots operating within MRI environments. As the robots assume full control of medical procedures, the reliability of their operation becomes paramount. Precise control over robot forces is particularly crucial to ensure safe interaction within the MRI environment. Furthermore, the confined space in the MRI bore complicates the safe operation of human-robot interaction, presenting challenges to maneuverability. However, there exists a notable scarcity of force-controlled robot actuators specifically tailored for MRI applications.       To overcome these challenges, UC Berkeley researchers have developed a novel MRI-compatible rotary series elastic actuator module utilizing velocity-sourced ultrasonic motors for force-controlled robots operating within MRI scanners. Unlike previous MRI-compatible SEA designs, the module incorporates a transmission force sensing series elastic actuator structure, while remaining compact in size. The actuator is cylindrical in shape with a length shorter than its diameter and integrates seamlessly with a disk-shaped motor. A precision torque controller enhances the robustness of the invention’s torque control even in the presence of varying external impedance; the torque control performance has been experimentally validated in both 3 Tesla MRI and non-MRI environments, achieving a settling time of 0.1 seconds and a steady-state error within 2% of its maximum output torque. It exhibits consistent performance across low and high external impedance scenarios, compared to conventional controllers for velocity-sourced SEAs that struggle with steady-state performance under low external impedance conditions.

Low Heat Loss Latent Heat Battery (LHB)

Researchers at the University of California, Davis have developed a green technology designed for the efficient storage and discharge of heat energy sourced from intermittent green energy supplies.

Improved Optical Atomic Clock In The Telecom Wavelength Range

Optical atomic clocks have taken a giant leap in recent years, with several experiments reaching uncertainties at the 10−18 level. The development of synchronized clock networks and transportable clocks that operate in extreme and distant environments would allow clocks based on different atomic standards or placed in separate locations to be compared. Such networks would enable relativistic geodesy, tests of fundamental physics, dark matter searches, and more. However, the leading neutral-atom optical clocks operate on wavelengths of 698 nm (Sr) and 578 nm (Yb). Light at these wavelengths is strongly attenuated in optical fibers, posing a challenge to long-distance time transfer. Those wavelengths are also inconvenient for constructing the ultrastable lasers that are an essential component of optical clocks. To address this problem, UC Berkeley researchers have developed a new, laser-cooled neutral atom optical atomic clock that operates in the telecommunication wavelength band. The leveraged atomic transitions are narrow and exhibit much smaller black body radiation shifts than those in alkaline earth atoms, as well as small quadratic Zeeman shifts. Furthermore, the transition wavelengths are in the low-loss S, C, and L-bands of fiber-optic telecommunication standards, allowing the clocks to be integrated with robust laser technology and optical amplifiers. Additionally, the researchers have identified magic trapping wavelengths via extensive studies and have proposed approaches to overcome magnetic dipole-dipole interactions. Together, these features support the development of fiber-linked terrestrial clock networks over continental distances.

Dissolvable Calcium Alginate Microfibers via Immersed Microfluidic Spinning

A novel method for producing dissolvable alginate microfibers critical for advanced tissue engineering and microfluidic network fabrication.

Silicon Solar Cells that Absorb Solar Photons Above 2.2 eV and are Transparent to Solar Photons Below 2.2 eV

Traditionally, land can be used for either crop growth or energy production. This technology optimizes the efficiency of land use by combining both. Researchers at the University of California, Davis have developed solar cell designs that absorb only specific solar photons (> 2.2 eV) to create electricity, while letting through beneficial light (< 2.2 eV) for efficient crop growth.

Multi-channel ZULF NMR Spectrometer Using Optically Pumped Magnetometers

         While nuclear magnetic resonance (NMR) is one of the most universal synthetic chemistry tools for its ability to measure highly specific kinetic and structural information nondestructively/noninvasively, it is costly and low-throughput primarily due to the small sample-size volumes and expensive equipment needed for stringent magnetic field homogeneity. Conversely, zero-to-ultralow field (ZULF) NMR is an emerging alternative offering similar chemical information but relaxing field homogeneity requirements during detection. ZULF NMR has been further propelled by recent advancements in key componentry, optically pumped magnetometers (OPMs), but suffers in scope due to its low sensitivity and its susceptibility to noise. It has not been possible to detect most organic molecules without resorting to hyperpolarization or 13C enrichment using ZULF NMR.         To overcome these challenges, UC Berkeley researchers have developed a multi-channel ZULF spectrometer that greatly improves on both the sensitivity and throughput abilities of state-of-the art ZULF NMR devices. The novel spectrometer was used in the first reported detection of organic molecules in natural isotopic abundance by ZULF NMR, with sensitivity comparable to current commercial benchtop NMR spectrometers. A proof-of-concept multichannel version of the ZULF spectrometer was capable of measuring three distinct chemical samples simultaneously. The combined sensitivity and throughput distinguish the present ZULF NMR spectrometer as a novel chemical analysis tool at unprecedented scales, potentially enabling emerging fields such as robotic chemistry, as well as meeting the demands of existing fields such as chemical manufacturing, agriculture, and pharmaceutical industries.

High-Precision Chemical Quantum Sensing In Flowing Monodisperse Microdroplets

      Quantum sensing is rapidly reshaping our ability to discern chemical processes with high sensitivity and spatial resolution. Many quantum sensors are based on nitrogen-vacancy (NV) centers in diamond, with nanodiamonds (NDs) providing a promising approach to chemical quantum sensing compared to single crystals for benefits in cost, deployability, and facile integration with the analyte. However, high-precision chemical quantum sensing suffers from large statistical errors from particle heterogeneity, fluorescence fluctuations related to particle orientation, and other unresolved challenges.      To overcome these obstacles, UC Berkeley researchers have developed a novel microfluidic chemical quantum sensing device capable of high-precision, background-free quantum sensing at high-throughput. The microfluidic device solves problems with heterogeneity while simultaneously ensuring close interaction with the analyte. The device further yields exceptional measurement stability, which has been demonstrated over >103s measurement and across ~105 droplets.  Greatly surpassing the stability seen in conventional quantum sensing experiments, these properties are also resistant to experimental variations and temperature shifts. Finally, the required ND sensor volumes are minuscule, costing only about $0.63 for an hour of analysis. 

A Combined Raman/Single-Molecule Junction System For Chemical/Biological Analysis

Researchers at the University of California, Davis have developed a device for multi-dimensional data extraction at the molecular level to allow one to simultaneously detect the presence of a single-molecule electrically, and to extract a chemical fingerprint to identify that molecule optically.

Next Generation Of Emergency System Based On Wireless Sensor Network

         Recent mass evacuation events, including the 2018 Camp Fire and 2023 Maui Fire, have demonstrated shortcomings in our communication abilities during natural disasters and emergencies. Individuals fleeing dangerous areas were unable to obtain fast or accurate information pertaining to open evacuation routes and faced traffic gridlocks, while nearby communities were unprepared for the emergent situation and influx of persons. Climate change is increasing the frequency, areas subject to, and risk-level associated with natural hazards, making effective communication channels that can operate when mobile network-based systems and electric distribution systems are compromised crucial.         To address this need UC Berkeley researchers have developed a mobile network-free communication system that can function during natural disasters and be adapted to most communication devices (mobile phones and laptops). The self-organized, mesh-based and low-power network is embedded into common infrastructure monitoring device nodes (e.g., pre-existing WSN, LoRa, and other LPWAN devices) for effective local communication. Local communication contains dedicated Emergency Messaging and “walkie-talkie” functions, while higher level connectivity through robust gateway architecture and data transmission units allows for real-time internet access, communication with nearby communities, and even global connectivity. The system can provide GPS-free position information using trilateration, which can help identify the location of nodes monitoring important environmental conditions or allowing users to navigate.

Using Automatic Speech Recognition To Measure The Intelligibility Of Speech Synthesized From Brain Signals

Researchers at the University of California, Davis have developed a computer-based method to evaluate/quantify the intelligibility of speech synthesized by a brain-computer interface or other speech prosthesis.

CoFe-Al2O3 Soft Magnetic Composite

CoFe-Al2O3 is a soft magnetic composite that can be formed using net shape manufacturing and offering superior magnetic, electrical and thermal properties.

DC Circuit Breaker for Emerging Power Systems

Many non-traditional energy sources, such as solar panels, fuel cells, and batteries, supply direct-current (DC) power. This has led to development of DC power systems for a number of applications since conversion to alternating-current (AC) can be eliminated. For example, DC distribution is now used for computer data centers, office buildings, and ship power and propulsion. Though the source, loads, and other components in a DC power system are well understood, there may be interest in innovation with respect to protection schemes since DC systems do not have a zero crossing in its current, and circuit breakers are unable to open up a faulted component without sustaining an arc.

  • Go to Page: