Browse Category: Engineering > Other

[Search within category]

Advanced Potentiostat

During In the last few decades, the use of miniaturized electrochemical devices has grown rapidly and found diverse applications in scientific and consumer products. The process of developing specialized electrochemical devices is often time-consuming and expensive. Experimental setups involving electrochemistry often use specialized measurement equipment such as a potentiostat. A potentiostat is an analytical instrument that controls the voltage and current between two or more electrodes in a cell. The accuracy, precision, and flexibility of applying or measuring voltages and currents depends on the quality and design of the electronic hardware, which for commercially available potentiostats, often correlate with the device’s cost and architecture. Consequently, one of the challenges faced by today’s electrochemical research community is how to perform modern experimental designs with expensive, asynchronous, and inflexible potentiostats.

Inertial Odometry System and Methods

Although GPS can be used for localization outdoors, indoor environments (office buildings, shopping malls, transit hubs) can be particularly challenging for many of the general population, and especially for blind walkers. GPS-denied environments have received considerable attention in recent years as our population’s digital expectations grow. To address GPS-denied environments, various services have been explored, including technology based on Bluetooth low energy (BLE), Wi-Fi, and camera. Drawbacks with these approaches are common, including calibration (fingerprinting) overhead using Wi-Fi, beacon infrastructure costs using BLE, and unoccluded visibility requirements in camera-based systems. While localization and wayfinding using inertial sensing overcomes these challenges, large errors with accumulated drift are known. Moreover, the decoupling of the orientation of the phone from the direction of walking, as well as accurately detecting walker’s velocity and detecting steps and measuring stride lengths, have also been challenges for traditional pedestrian dead reckoning (PDR) systems. Relatedly, blind walkers (especially those who do not use a dog guide) often tend to veer when attempting to walk in a straight line, and this unwanted veering may generate false turn detections with such inertial methods.

(SD2022-122) Unsupervised channel compression method for low power neural prostheses

Brain machine interfaces (BMIs) have the potential to help individuals with functional impairments, such as loss of motor control, due to neurological disease or spinal cord injury. BMIs map brain signals acquired in relevant brain regions to patient intent to enable functional restoration. In previous studies, BMIs have enabled patients to control robotic arm movements, and type by translating brain signals directly into text.  Intracortical BMIs record and sample brain signals from relevant regions of the brain at rates high enough to process both local field potentials (LFP) and action potentials (spikes).The development of high performance brain machine interfaces (BMIs) requires scaling recording channel count to enable simultaneous recording from large populations of neurons. Unfortunately, proposed implantable neural interfaces have power requirements that scale linearly with channel count. 

Sinusoidal Surface Serrations On A Bio-Inspired Propeller

Currently in the United States, alone there are over 1.6 million drones used for leisure and professional purposes with those number expected to increase greatly by 2024. However, the increase in noise pollution associated with these drones may be detrimental to the environment. Drone associated noise pollution and disturbance may limit the adoption of drones in different applications. One possible solution is to reduce noise from the propellerthrough new propeller designs. UCB researchers have developed a propeller design that can be used in drone propellers that can increase the thrust, improve the power efficiency, and reduce the associated noise emissions in comparison to conventional propeller designs. By extending two-dimensional serrations to a three-dimensional geometry the researchers strengthened the flow distortion and provided more powerful control over the high-frequency noise band in a rotating propeller. 

Efficient Boost/Step-Up Direct Current-Direct Current (DC-DC) Converter

Renewable energy sources such as solar photovoltaics (PV) and wind turbines are used for clean power generation to address the ever-increasing energy consumption. With large-scale integration of renewables, battery storage becomes essential in the grid to meet supply-demand volatility. In these scenarios, direct current (DC) grids offer multiple benefits over alternating current (AC) grids such as, improved efficiency, controllability, reliability and reduced cost. Isolated voltage boost/step-up DC-DC converters are used for interfacing PV and wind energy sources with DC grids and DC-DC converters serve such applications and environments. Existing DC-DC converter designs have known weaknesses. For example, shunt-resonant converter capacitors require a dedicated charging interval in every switching half-cycle, which does not contribute towards energy transfer and results in duty-cycle loss. Since the shunt-resonant capacitor is designed to hold resonant energy sufficient for a rated current condition, resonant energy is fixed for all loading conditions. At reduced loading, reduced resonant energy is sufficient but shunt-configuration has no means to achieve this control. Although this may be mitigated by using two additional switches, this arrangement leads to increased losses and cost. At reduced loading, duty-cycle loss increases significantly because the reduced current results in longer capacitor charging time. This severely restricts the operation range of converter. Smooth current commutation and zero-current-switching (ZCS) are also lost at overload conditions since the capacitor is designed for rated-current condition. The shunt-resonant capacitor is expected to hold its voltage/energy during the operating mode when input inductor charges. However, a leakage path exists through the transformer winding parasitics, which results in capacitor discharge. As a result, the capacitor energy must be overrated to compensate for this loss, which further aggravates all of the aforementioned issues. In another example, series-resonant capacitors must also be charged to a voltage higher than the reflected voltage across the transformer-primary. Peak voltage-rating of primary-side components (e.g., switches and input inductor) is also increased. Series-resonant capacitor also transfers energy to the output during the time interval when resonant current commutation occurs, which requires using capacitors having a higher rating. At reduced loading, the series-resonant capacitor does not have enough voltage to satisfy the resonant condition. Switching frequency may be used as an additional control parameter without using extra switches. Reduction in switching frequency results in increased charging time and hence, higher voltage, while ripple content increases and requires larger filters due to varying switching frequency. Overall, while traditional DC-DC converters like the aforementioned meets some requirements, it may be desirable to have new DC-DC converter approaches to smoothly onboard and operate PV and wind energy production with DC grids.

Fluidic System For The Rotational Cycle-Determined Release Of Liquid From A Chamber In A Rotor

See patent information below. The present invention relates to a fluidic device. More specifically but not exclusively, the present invention relates to serial siphon valves for a fluidic device. Control of the release of liquid from a fluidic chamber via a spinning rotor is a very important function in the area of centrifuged-based fluidic systems for applications such as immunoassays, nucleic acid analysis, biochemical tests, chemical tests and sample preparation. This is because it is often necessary to mix different reagents together at the appropriate time, either in parallel or in series.   It is a non-limiting object of the present invention to provide a method using a co-radial arrangement of siphon structures each separated by a capillary valve in a fluidic system. Such a method allows saving radial space. This saved radial space can be used, for example, to add more features on a fluidic device. It is a non-limiting object of the present invention to provide siphon structures that enable to sequentially distribute liquids in a fluidic system upon successive centripetal accelerations and decelerations applied to a rotary platform. Sequential fluid distribution can be controlled by the length and number of serial siphon structures. It is a non-limiting object of the present invention to provide a device using a co-radial arrangement of siphon structures each separated by a capillary valve in a fluidic system. Such a device allows saving radial space. This saved radial space can be used, for example, to add more features on a fluidic device. 

Modular Piezoelectric Sensor Array with Beamforming Channels for Ultrasound Imaging

Researchers at the University of California, Davis have developed a large area sensor array for ultrasound imaging systems that utilizes high-bandwidth piezoelectric sensors and modular design elements.

Machine Learning-Based Monte Carlo Denoising

Brief description not available

High-Efficiency Heat Exchanger Operating at Elevated Temperatures and Pressures

Researchers at the University of California, Davis have developed a heat exchanger produced by additive manufacturing that operates with high efficiency under high pressure and temperature conditions.

Microchannel Polymer Heat Exchanger

Researchers at the University of California, Davis have developed a highly efficient microchannel polymer heat exchanger in a compact and lightweight design.

High-Frequency Imaging and Data Transmission Using a Re-configurable Array Source with Directive Beam Steering

Researchers at the University of California, Davis have developed a reconfigurable radiator array that produces a high frequency directed beam via uninterrupted, scalable, electronic beam steering.

Programmable System that Mixes Large Numbers of Small Volume, High-Viscosity, Fluid Samples Simultaneously

Researchers at the University of California, Davis have developed a programmable machine that shakes and repeatedly inverts large numbers of small containers - such as vials and flasks – in order to mix high-viscosity fluids.

An Automated Quality Monitoring and Control Method for Concrete 3D Printing / Additive Manufacturing

3D printing of concrete structures is a highly efficient, cheap process. However, imperfections are difficult to detect and can compromise the performance of these structures. UCI researchers have developed a method in which a current sent through the printed structure produces a “fingerprint” that allows the real-time detection of flaws in the concrete structure.

Scalable High Intensity Ultrashort Pulse Compressor And Cleaner

This invention is a high intensity ultrashort pulse compressor that filters out low intensity artifacts and is made with commercially available low-cost components. This integrated system also provides scalability and can therefore be used for a range of laser intensities.

Laser additive manufacturing method for producing porous layers

The inventors at UCI have created a method of doping layered cathode materials in sodium-ion batteries. In this method more than five impurity elements are introduced into a host material, in this case a sodium-based layered cathode material, Na0.667Mn0.666Ni0.167Co0.167O2. This technique is being utilized in order to create sodium-ion batteries that are more competitive with the historically used lithium-ion battery.

Integrated Virtual Reality and Audiovisual Display Support System for Patients in a Prone Position

Researchers at the University of California, Davis have developed an integrated virtual reality and audiovisual support system that increases the comfort of patients who are undergoing diagnostic tests or medical procedures in the prone and other positions.

Nanocellulose-based Aerogel Fibers as Insulation

Researchers at the University of California, Davis have produced continuous, sheath-core, coaxial fibers with highly porous, nanocellulose, aerogel cores for use as high-performance insulators.

Digital Droplet Infusion System for High-Precision, Low-Volume, Delivery of Drugs or Nutritional Supplements

Researchers at the University of California, Davis have developed the first, digital, droplet infusion system capable of high-precision delivery of very low-volume therapeutics or nutraceuticals.

Group 13 Metals as Anolytes in Non-Aqueous, Redox Flow Batteries

Researchers at the University of California, Davis have identified earth abundant and other relatively inexpensive materials that form the basis of novel molecules (anolytes), with long lifecycles and high energy densities, to be used in redox flow batteries.

Phased-Locked Loop Coupled Array for Phased Array Applications

Researchers at the University of California, Davis have developed a phased-locked loop coupled array system capable of generating phase shifts in phased array antenna systems - while minimizing signal losses.

Multi-Phase Hybrid Power Converter Architecture With Large Conversion Ratios

The power demands on data centers are large and increasing rapidly. This is straining data center economic and environment impacts, and in turn driving improvements in data center power efficiencies. Data centers have been widely adopting 48 V intermediate bus architectures due to higher efficiency, good flexibility, and reduced cost. However, a major challenge in such systems is the conversion from the 48 V bus to the extreme low voltage and high current operating levels of server CPUs and GPUs.To address this challenge, UC Berkeley researchers developed a multi-phase hybrid power converter architecture. The Berkeley design uses hybrid converter topologies. A switched-capacitor network is smartly merged with a switched-inductor network, resulting in circuit component number reduction and soft-charging operation of the capacitors. Furthermore, the Berkeley architecture integrates a multi-phase control technique to achieve a higher conversion ratio of the switched-capacitor network, which can further improve the overall system efficiency without increasing the circuit size.  

  • Go to Page: