Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Medical > Disease: Infectious Diseases

Categories

[Search within category]

Portable waterborne pathogen detector

The inventors at the University of California, Irvine, have developed an automated, easy-to-use digital PCR system that can be used at the time of sample collection, making it highly effective in microbial pathogen analysis in resource-limited settings and extreme conditions.

Structurally Validated Anti-avß8 Antibodies for Targeting TGFß for Immunotherapy

This invention provides highly efficient antibodies whose epitopes and mechanism of action have been structurally defined against integrin αvβ8. These antibodies have been designed to be used as therapeutic for cancer. Other antibodies have been designed as companion diagnostic tools.

Circulatory Cells as Carriers for Photo-Activated Bioregulators

Circulatory cells as carriers for photo-activated small molecule bioregulator releasing compounds and systems.

Anti-Oxidant Response Modifiers as Treatment for HIV-Associated Neurocognitive Disorder

UCLA researchers have identified anti-oxidative response modulators as a potential treatment for HIV-associated neurocognitive disorders (HAND).

Anti-Microbial Contact Lens With Ocular Drug Delivery

Anti-microbial, anti-fungal drug eluting contact lens for the controlled release of ophthalmic therapeutics.

Novel Anti-Bacterial, Anti-Fungal Nanopillared Surface

Medical devices are susceptible to contamination by harmful microbes, such as bacteria and fungi, which form biofilms on device surfaces. These biofilms are often resistant to antibiotics and other current treatments, resulting in over 2 million people per year suffering from diseases related to these contaminating microbes. Death rates for many of these diseases are high, often exceeding 50%. Researchers at UCI have developed a novel anti-bacterial and anti-fungal biocomposite that incorporates a nanopillared surface structure that can be applied as a coating to medical devices.

Antiviral Compounds for HIV and Other Viral Infections

This invention identifies a novel class of HIV inhibitors targeting RNA-protein interactions.

Test for Intestinal Permeability

Researchers from the Department of General Surgery at UCLA have developed an easy-to-use method to determine intestinal permeability that utilizes an FDA-approved non-absorbable dye.

Handheld Device to Detect Ear Infections

Acute otitis media (AOM) is a painful ear infection with a high incidence rate in children. Despite its prevalence, it is commonly misdiagnosed especially in the youngest children, in part due to obstruction of the ear canal by earwax. Researchers at UCI have developed a compact, low-cost, adaptable device to diagnose otitis media through LED light absorption. The device is able to diagnose otitis media through earwax that could be obstructing the view of the eardrum.

A Method For Screening Drugs, Nutritional Supplements And Probiotics For Their Ability To Enhance Or Disrupt The Gut Barrier

The gut is a complex environment; the gut mucosa maintains immune homeostasis under physiological circumstances by serving as a barrier that restricts access of trillions of microbes, diverse microbial products, food antigens and toxins to the largest immune system in the body. The gut barrier is comprised of a single layer of epithelial cells, bound by cell-cell junctions, and a layer of mucin that covers the epithelium. Loosening of the junctions induced either by exogenous or endogenous stressors, compromises the gut barrier and allows microbes and antigens to leak through and encounter the host immune system, thereby generating inflammation and systemic endotoxemia. An impaired gut barrier (e.g. a leaky gut) is a major contributor to the initiation and/or progression of various chronic diseases including, but not limited to, metabolic endotoxemia, type II diabetes, fatty liver disease, obesity, atherosclerosis and inflammatory bowel diseases. Despite the growing acceptance of the importance of the gut barrier in diseases, knowledge of the underlying mechanism(s) that reinforce the barrier when faced with stressors is incomplete, and viable and practical strategies for pharmacologic modulation of the gut barrier remain unrealized.

Non-Human Primate Adenovirus Model of Human Respiratory Disease

Researchers at the University of California, Davis have developed a model of human respiratory disease using a titi monkey adenovirus.

Sieve Container For Contactless Media Exchange For Cell Growth

Media that contains nutrients and growth factors is necessary to grow all types of cells, a process that is widely used in many fields of research. Such media should be routinely changed either to different media or a fresh batch of the same media. This change currently involves either using a pipette to transfer cells from their current dish of media to a new dish, or aspirating the media out of the dish and replacing it with new media. Both methods have inherent risks to stressing and damaging the cells. Researchers at UCI have developed a unique dish for growing cells that allows for safer aspiration of the old media, which reduces stress and damage to the cells.

Novel Small Protein Inhibitors for Rapid and Controllable CRISPR-Cas9 Interference

This invention identifies a novel class of natural protein-based inhibitors of CRISPR-Cas9, which could eliminate off-target effects of Cas9-mediated gene editing. It also presents an attractive antibiotic strategy and a potential biodefense agent against CRISPR bioterror threat.

Quantum Dot Enabled Detection Of Escherichia Coli Using A Cell-Phone

UCLA researchers in the Department of Electrical Engineering have developed a platform that can detect E. coli using a cell phone.

Next Generation PCR

In many critical healthcare situations, including sepsis and septic shock, the identification and diagnosis of infectious agents is burdensome and slow. Timely medical intervention is often delayed while laboratory testing is performed and the results analyzed. A point-of-care rapid diagnostic tool is a well-known unmet need within the clinical community. Some tools do exist, but they typically present limitations and draw-backs. Importantly, none give actionable results in the clinically relevant timeframe of 3-4hrs. Recently, UCSD researchers have developed an improved system for rapid gene profiling and diagnostic identification of infectious disease agents and their resistance profiles, by applying High Resolution Melt (HRM) technology and machine learning to a digital polymerase chain reaction (dPCR) platform.

Polycytotoxic T Cells

UCLA researchers in the Department of Dermatology have characterized a novel subset of CD8+ T cells, termed polycytotoxic, that mediate killing of intracellular pathogens.

PCR-Free Ultrasensitive Hiv And Other Virus Quantitation Device

UCLA researchers in the Department of Electrical Engineering & Bioengineering and Department of Medicine have developed a novel integrated device that can perform label-free ultrasensitive measurements of viruses in fluids (i.e. HIV in blood), obviating PCR and bulky, costly infrastructure required for current generation clinical assays.

A Novel Method to Generate Specific and Permanent Macromolecular Covalent Inhibitors

UCSF researchers have invented a novel method to generate covalent macromolecular inhibitors. This strategy allows a peptide inhibitor to bind to its target protein specifically and irreversibly through proximity-enabled bioreactivity.

A vaccination strategy against Chlamydia and other sexually transmitted diseases

No vaccines exist against the common sexually-transmitted disease, Chlamydia. The current invention is a novel vaccination formulation wherein fragments from two different microbial proteins, one each from a Chlamydia species and a Neisseria species are fused together. This novel fusion protein is proposed as a robust vaccine to provide protection against Chlamydia.

Novel Method to Identify Unknown Viruses

Prof. Shou-wei Ding and colleagues at UCR have developed a new method for virus discovery that is independent of either amplification or purification of viral particles. Virus-derived siRNAs and piRNAs are produced by the host immune system as an antiviral response to viral infection. These viral siRNAs and piRNAs are overlapping in sequence and can be assembled back into long continuous fragments of the infecting viral RNA genome. A researcher may sequence the total small RNAs of 18 to 29 nucleotides in length in a disease sample and search a public database of viral sequences using the contiguous sequences assembled from the small RNAs to identify a new or known virus with homology to all or part of a known viral genome in the database.

Antibiotic-Peptide Conjugates With Anti-Microbial Efficiency Against Chronic Infections

The global antibiotics market is projected to reach $44.7 billion in 2020, growing at a CAGR of 2%. They are used for treating a large variety of chronic infections such as tuberculosis, pneumonia, typhoid and foodborne illnesses that present a huge health burden. However, there is an urgent need for new antibiotics as resistant bacterial strains are causing recurrent infections. These resistant strains often derive from dormant cells called persister cells that are not penetrated by antibiotics. Targeting these persister cells will help clear recurrent and antibiotic-resistant infections.

Novel Antiviral Compounds to Treat Enterovirus Infections

Researchers in UCLA Department of Molecular & Medical Pharmacology have used a rapid, live virus assay to develop potent enterovirus inhibitors.

Hybridoma Producing Antibodies To C1qRp

Individuals with genetic immunodeficiency, as well as patients with HIV, cancer, and those undergoing chemotherapy or high risk surgery, are at increased risk for infection. C1q, an important component of the immune system, is known to enhance phagocytosis (cell ingestion of harmful bacteria or other materials). Scientists at UCI have developed antibodies to the receptor for C1q, C1qRp, to be used as a target for prophylactic treatments in populations at high risk of infection.

Stimuli Responsive Immunostimulants

An immune response typically occurs during inflammation, auto-immune diseases, or cancers. In such cases, chemical triggers, or immunostimulants, recognized by receptor proteins at cell membranes activate the immune cells. Researchers can use these immunostimulants to test how different cell subsets contribute to immune response mechanisms. This invention describes a novel type of immunostimulant that can be toggled on and off, both inside the body and in vitro.

Antibodies targeting mammalian Sterol Regulatory Element Binding Proteins (SREBP) 1 and 2

Sterol Regulatory Element Binding Proteins (SREBP) are important factors that control lipid homeostasis in mammals. Researchers at UCI have prepared antibodies that have good affinity and specificity for human SREBP1/2 for use as research tools. These antibodies have application in genetic and immunotherapeutic research areas.

  • Go to Page: