Browse Category: Medical > Disease: Infectious Diseases

[Search within category]

Inhibitors Of Viral Macrodomains

Brief description not available

A Covalent Protein Inhibitor For Sars-Cov-2

Brief description not available

Using Class I Lasso Peptides to Inhibit the Bacterial Type III Secretion System

Antibiotic resistance is a major issue in infectious disease treatment and prevention. In bacteria, the type III secretion system (T3SS) secretes effector proteins in the host cell, allowing the pathogen to infect. The T3SS is largely found on pathogens and not beneficial bacteria, so targeting the T3SS might have an advantage over using classic antibiotics, which disturb the beneficial human microbiome.

Vaccines Using Macrophage Suppression

Researchers at the University of California, Davis have developed a technology that introduces vaccines that express macrophage-suppressing molecules to significantly enhance inflammatory T-cell functions for improved immune responses.

Silyl-lipid N-acyl L-homoserine Lactones (AHLs) as Quorum Sensing Molecules (for Biofilms)

Researchers at the University of California, Davis have developed a potential therapeutic strategy aiming at disrupting intercellular communication of pathogens using quorum sensing molecules and silicon-based pharmacophores.

Hydrogelated Bacteria as Antibacterial Vaccines

Researchers at the University of California, Davis have developed a vaccine platform utilizing non-replicating, metabolically active Cyborg Bacterial Pathogens to combat multi-antibiotic-resistant bacteria.

Method for Detection of Virus Transmission Enhancing Mutations Using Population Samples of Genomic Sequences

Researchers at the University of California, Davis have developed a computer-implemented method to identify viral mutations that enhance transmission and predict their prevalence in populations over time.

Vancomycin-Teixobactin Conjugates

A novel approach to significantly enhance vancomycin's effectiveness against drug-resistant pathogens by conjugating it with a minimal teixobactin pharmacophore.

REVEALR Technology for Viral Detection

A novel diagnostic technology offering rapid, accurate, and inexpensive detection, genotyping, and quantification of viral RNA in patient-derived samples, enhancing public health capabilities.

Advanced Vaccine Technology: Lipid Nanoparticle Adjuvants

This technology represents a pioneering approach to vaccine development, focusing on encapsulated adjuvants and antigens to enhance efficacy while minimizing side effects.

Tertiary Structure Of The Chlamydia Major Outer Membrane Protein (MOMP)

Researchers at UCI have discovered the tertiary structure of the Chlamydia major outer membrane protein (MOMP). Despite historical challenges in formulating an effective vaccine, recent advancements in understanding MOMP's structure offer new pathways for vaccine development against urogenital and ocular infections caused by C. trachomatis.

Antimicrobial Therapy Through The Combination Of Pore-Forming Agents And Histones

A novel antimicrobial approach combining pore-forming agents with histones to eradicate bacteria and bypass known resistance mechanisms.

Polymeric Vectors For mRNA Delivery

A novel dendronized polypeptide architecture for efficient and safe mRNA delivery, suitable for anti-tumor immunotherapy.

Unsupervised Positron Emission Tomography (PET) Image Denoising using Double Over-Parameterization

Researchers at the University of California, Davis, have developed a novel imaging system that improves the diagnostic accuracy of PET imaging. The system combines machine learning and computed tomography (CT) imaging to reduce noise and enhance resolution. This novel technique can integrate with commercial PET imaging systems, improving diagnostic accuracy and facilitating superior treatment of various diseases.

One-step Packaged Multi-mode CMOS Bio-analyzer for Point-of-Care

      Current clinical practice for detecting low-concentration molecular biomarkers requires sending samples to centralized labs, leading to high costs and delays. Successful point-of-care (POC) diagnostic technology exist, such as the paper-based lateral-flow assay (LFA) used for pregnancy tests and SARS-CoV-2 rapid antigen tests, or miniaturized instruments such as the Abbot i-Stat Alinity. However, the former provides binary results or limited quantitative accuracy, and the latter is too expensive for in-home deployment. A promising approach for POC diagnostics, offering tailored circuit optimization, multiplexed detection, and significant cost and size reductions, is millimeter-sized CMOS integrated circuits coupled with microfluidics. Recent demonstrations include protein, DNA/RNA, and cell detection. The current complexity of system packaging (e.g., wire/flip-chip bonding) makes integrating microfluidics with more sophisticated functions challenging, and often-required syringe pumps and tubing are operationally unfriendly, limiting current approaches.       UC Berkeley researchers have developed a fully integrated, multi-mode POC device that requires single-step assembly and operates autonomously. Drawing inspiration from RFID technology and implantables, they have introduced inductively-coupled wireless powering and communication functionality into a CMOS bio-analyzer. With the chip being fully wireless, the die can be easily integrated into a substrate carrier, achieving a completely flat surface that allows for seamless bonding with the microfluidic module. In the final product, the device will be sealed in a pouch inside a vacuum desiccator. The user tears the pouch, adds a drop of sample, and the system automatically begins operation. The operation window can last up to 40 minutes, making the process insensitive to time delays. The present CMOS bio-analyzer integrates pH-sensing and amperometric readout circuits for both proton-based and redox-based immunoassays.

4-N-Derivatized Sialic Acids and Related Sialosides

Researchers at the University of California, Davis have developed advanced compounds targeting neuraminidase activity to combat viral infections and understand cellular mechanisms.

Affinity Targeted Immunogens

Researchers at the University of California, Davis have developed an approach to elicit powerful immune responses by engineering the binding capabilities of single chain trimer (SCT) proteins to CD8.

Methods and Systems for Rapid Antimicrobial Susceptibility Tests

Rapid antimicrobial susceptibility testing (AST) is a method for quickly determining the most effective antibiotic therapy for patients with bacterial infections. These techniques enable the detection and quantification of antibiotic-resistant and susceptible bacteria metabolites at concentrations near or below ng/mL in complex media. Employing bacterial metabolites as a sensing platform, the system integrates machine learning data analysis processes to differentiate between antibiotic susceptibility and resistance in clinical infections within an hour. With the results, a clinician can prescribe appropriate medicine for the patient's bacterial infection.

O-Acetyl Glycosphingosines and Gangliosides, as well as Their N-Acetyl Analogs

Researchers at the University of California, Davis have developed a technology providing the creation of stable analogs of glycosphingosines and gangliosides containing O-acetylated sialic acid for extensive biological and medical applications.

Affinity Peptides for Diagnosis and Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 and Zika Virus Infections

Researchers at the University of California, Davis have developed a technology to expedite COVID-19 diagnosis and treatment using viral spike protein (S-protein) targeted peptides Zika virus envelop protein.

Novel molecular target and approach(es) for the bidirectional modulation of T-cell function

Researchers at UC Irvine have identified and tested a molecular target that regulates T cell function during chronic viral infection and cancer. The molecular target is one of the high mobility group proteins (HMGB2). HMGB2 is a DNA binding protein that regulates transcriptional processes, meaning that its modulation will have profound effects on T cell differentiation and ultimate function by altering the expression of many genes.

Recombinant Enhanced Antiviral Restrictors

Researchers at the University of California, Davis (“UC Davis”) have developed fusion proteins effective in inhibiting the replication of diverse groups of viruses that can be useful in controlling vector-borne virus transmission as well as reducing vector populations.

(SD2021-433) Neutralize RNA viral infection by disrupting host RNA-viral protein interactions

Presently, antiviral strategies are mostly focused on targeting viral proteins. However, the high mutation rates of RNA viruses, such as SARS-CoV-2, make the development of effective antiviral drugs very challenging. Disrupting viral-host interactions such as by targeting pro-viral, non-essential human genes will more likely prove effective against new variants or future coronavirus outbreaks.

Screen for Inhibitors Of The Bacterial Type III Secretion System

 As currently available antibiotics become ineffective due to the rise in antibiotic resistance among pathogenic bacteria, development of completely new classes of antibiotics is critical. Classic antibiotics target pathogens and commensal bacteria indiscriminately; therefore, their use puts selective pressure on both populations. Because of the abundance of commensals within a mammalian host, antibiotic resistance is thought to arise more frequently in commensal bacteria and is horizontally transferred to pathogens. In contrast to classic antibiotics, virulence blockers are compounds that selectively inhibit the expression or function of a virulence factor in a pathogen or group of pathogens. Advantages of virulence blockers are twofold. For one, selective pressure on a limited number of microbes, i.e., only pathogens expressing the molecular target of the virulence blocker, should limit the evolution of resistance. Second, the decreased commensal killing by virulence blockers has the potential to preserve a healthy microbiota, which is critical for maintaining gut homeostasis and defending against opportunistic pathogens. Type III secretion systems (T3SS) are bacterial appendages required by dozens of pathogens to cause disease, including Salmonella, enteropathogenic Escherichia coli (EPEC), Shigella, Pseudomonas, and Yersinia, but they are largely absent in nonpathogenic bacteria. Bacteria use T3SS to inject bacterial effector proteins into target host cells to manipulate host processes for the benefit of the pathogen. Seven T3SS injectisome families have been identified and share a number of homologous membrane-associated components with the flagellar basal body. Agents that target T3SS would be key virulance blockers for a set of pathogens that are very important to human and animal health as are methods of screening for such agents. 

  • Go to Page: