Browse Category: Medical > Disease: Cardiovascular and Circulatory System

[Search within category]

Using Contact Doppler Radar to Monitor PA Pressure in Heart Failure Patients

Researchers at the University of California, Davis and Cardiac Motion LLC have collaborated to develop a method for monitoring heart failure using contact Doppler radar.

Abnormal Heart Activity Monitoring Using Contact Doppler Radar

Researchers at the University of California, Davis have developed a device for non-invasive, simultaneous monitoring of fetal and maternal heart rates to enhance reproductive management and health monitoring.

Portable Heart Motion Monitor

Researchers at the University of California, Davis, have developed a device to monitor the heart using radiofrequency signals to improve the detection and diagnosis of various cardiovascular conditions. The device can integrate with existing mobile products, which is particularly helpful for older adults and those with limited access to adequate medical facilities.

Biomaterial For Wound Healing

Researchers at UC Irvine have developed a novel biomaterial to heal and regenerate tissues for chronic wounds. The biomaterial, referred to as GelMA-AN, has immunomodulating properties engineered for complete incorporation into injured tissue while enhancing the regenerative healing activities of immune and stromal cells. It is based on a gelatin scaffold supplemented with Methacrylic Anhydride and immunomodulating apoptotic neutrophil cells. All components have high biocompatibility due to structural and biochemical similarities to the host wound environment. This combination of the hydrogel scaffold and apoptotic neutrophils has uncovered a wound healing mechanism that acts through immunomodulation to enhance regenerative healing. The mechanism works by modulating immune cells to drive them from inflammatory to healing activities that in turn stimulate stromal cells to repair the skin and regenerate health skin appendages such as vasculature.

15Lox1 Inhibitors For Stroke

Stroke is a leading cause of mortality and disability worldwide and the economic costs of treatment and post-stroke care are substantial. Every year, more that 14 million people are affected by stroke, and over 6 million stroke patients die from this condition and associated complications. 2-(2,3,5-trisubstituted phenyl)oxazole compounds potently inhibit 12/15-LOX. Hence, the compounds of this disclosure are advantageously useful to treat or prevent various disorders where 12/15-LOX is implicated in the pathology of the disorder (e.g.,stroke). 

Novel Human 12-Lipoxygenase (Lox) Inhibitors

Human Platelet-type 12-(S)-lipoxygenase (12-LOX) is a non-heme iron-containing oxygenase that catalyzes the regio- and stereo-specific addition of molecular oxygen to polyunsaturated fatty acids (PUFA). 12-LOX belongs to a family of enzymes that also include 5- LOX and 15-LOX, which oxygenate arachidonic acid (AA) at their corresponding carbon positions. The hydroperoxyeicosatetraenoic acid (HPETE) product is subsequently reduced by cellular peroxidases to form the hydroxyeicosatetraenoic acid (HETE), which in the case of 12- LOX is 12-(S)-HETE.Although 12-LOX expression is predominantly restricted to platelets (~14,000 molecules per platelet), it is also expressed in some hematopoietic and solid tumors. To date, 12-LOX is the only LOX isoform identified to be present in platelets, and its activity is part of a number of platelet functions, including granule secretion, platelet aggregation, and normal adhesion through specific agonist-mediated pathways, such as collagen and the thrombin receptor, PAR4. Normal platelet activation plays a central role in the regulation of hemostasis, but uncontrolled activation can lead to pathologic thrombotic events, such as ischemic coronary heart disease.

Implantable Prosthetic Valves

The invention pertains to a prosthetic valve featuring a saddle-shaped annulus that synchronously transforms between concave and convex configurations, facilitating seamless opening and closure synchronized with cardiac cycles. Comprising leaflets and support elements, the valve mimics natural heart valve function, enabling effective blood flow regulation and offering versatile deployment options for cardiac and vascular applications.

Growth-accommodating heart valve system

This technology describes a prosthetic heart valve system designed to accommodate the growth of children.

COMPOUNDS FOR MODULATING EPITHELIAL 15-(S)-LIPOXYGENASE-2 AND METHODS OF USE FOR SAME

Lipoxygenases (LOX) are enzymes that catalyze the peroxidation of certain fatty acids. The cell membrane is mostly made of lipids (which include fatty acids), and peroxidation can cause damage to the cell membrane. The human genome contains six functional LOX genes that encode for six LOX enzyme variants, or isozymes. The role that each LOX isozyme plays in health and disease varies greatly, spanning issues such as asthma, diabetes, and stroke. LOX enzymes are extremely difficult to target due to high hydrophobicity. Potential leads are often ineffective because they are either not readily soluble or not selective for a particular LOX enzyme.  Studies have implicated human epithelial 15-lipoxygenase-2 (h15-LOX-2, ALOX15B) in various diseases. h15-LOX-2 is highly expressed in atherosclerotic plaques and is linked to the progression of macrophages to foam cells, which are present in atherosclerotic plaques. h15-LOX-2 mRNA levels are also highly elevated in human macrophages isolated from carotid atherosclerotic lesions in symptomatic patients. Children with cystic fibrosis had reduced levels of h15-LOX-2, which affects the lipoxin A4 to leukotriene B4 ratio. Furthermore, the interactions of h15-LOX-2 and PEBP1 changes the substrate specificity of h15-LOX-2 from free polyunsaturated fatty acids (PUFA) to PUFA-phosphatidylethanolamines (PE), leading to the generation of hydroperoxyeicosatetraenoic acid (HpETE) esterified into PE (HpETE-PE). Accumulation of these hydroperoxyl membrane phospholipids has been shown to cause ferroptotic cell death, which implicates h15-LOX-2 in neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and Huntington’s diseases.  

Novel Solid Lipid Nanoparticle To Improve Heart Cardio Protection

A primary reason behind the lack of progress in heart therapeutics is the inability to use phenotypic human tissue-level approaches to discover novel therapies. In recent years, there have been significant advances in the development microphysiological systems (MPS), which recapitulate organ-level and even organism-level functions.   MPS are quickly becoming representative of the future of disease modeling and drug screening, therefore paving the way for complex in vitro models to dominate the preclinical drug discovery landscape. However, there has yet to be an effective LNP formulation for therapeutic mRNA delivery to the heart. Therefore, despite progress in this area, one of the remaining challenges is to develop a LNP formulation capable of diffusing within human cardiac muscle, transfecting cardiomyocytes, and escaping the endo-lysosome before degradation more efficiently than current strategies. UC Berkeley researchers and others have developed compositions and methods using lipid nanoparticles for delivery of a payload (e.g., messenger RNA (mRNA)) to the heart, for delivery of mRNA for transfection of cells and methods of treatment.

15LOX1 Inhibitor Formulation Determination For IV Administration

Lipoxygenases catalyze the peroxidation of fatty acids which contain bisallylic hydrogens between two cis double bonds, such as in linoleic acid (LA) and arachidonic acid (AA). Lipoxygenases are named according to their product specificity with AA as the substrate because AA is the precursor of many active lipid metabolites that are involved in a number of significant disease states. The human genome contains six functional human lipoxygenases (LOX) genes (ALOX5, ALOX12, ALOX12B, ALOX15, ALOX15B, eLOX3) encoding for six different human LOX isoforms (h5-LOX, h12S-LOX, h12R-LOX, h15-LOX-1, h15-LOX-2, eLOX3, respectively). The biological role in health and disease for each LOX isozyme varies dramatically, ranging from asthma to diabetes or stroke. The nomenclature of the LOX isozymes is loosely based on the carbon position (e.g., 5, 12, or 15) at which they oxidize arachidonic acid to form the corresponding hydroperoxyeicosatetraenoic acid (HpETE), which is reduced to the hydroxyeicosatetraenoic acid (HETE) by intracellular glutathione peroxidases. Lipoxygenase inhibitors are difficult to formulate due to challenges with solubility and other factors, therefore new formulations are needed.

ML351 As Treatment For Stroke And Ischemic Brain Injury

Lipoxygenases form a large family of enzymes capable of oxidizing arachidonic acid and related polyunsaturated fatty acids. One such lipoxygenase, 12/15 LOX can oxidize both the C-12 and C-15 of arachidonic acid, forming 12- or 15-hydroperosyarachidonic acid (12- or 15-HPETE). Lipoxygenases and their metabolites have been implicated in many diseases. In particular 12/15-LOX (also known as 15-LOX-1, 15-LOX, or 15-LO-1 in humans and L-12-LoX, leukocyte-type 12-LO, or L-12-LO in mice) plays a role in atherogenesis, diabetes, Alzheimer's, newborn periventricular leukomalacia, breast cancer, and stroke. Whatever the name, the protein is encoded by the gene ALOX15 in both mice and humans. Lox inhibitors are difficult to develop due to the mouse and human homologs having different substrate and inhibitor specificities - 12/15 LOX produces predominantly 15-HETE in humans and 12-HETE in mice. So existing inhibitors are not selective for 12/15 LOX with regard to other LOX isoforms. In addition, many are strong antioxidants and therefore may result in off-target effects. 

Micron-resolution malleable strain and pressure sensor

Scientists at UC Irvine have developed a sensitive, customizable, and user-friendly sensor for (1) strain detection as a result of cellular movement, (2) micro-fluidic device pressure detection, and (3) real-time monitoring of valve statuses in microfluidic chips. This research tool will provide new insights regarding cellular biophysics.

Intra-Beat Biomarker For Accurate Blood Pressure Estimations

Researchers at UC Irvine have developed a novel algorithm that more accurately filters raw blood pressure (BP) data collected from continuous non-invasive blood pressure sensors. The algorithm features improvements in eliminating baseline signal drift while maintaining signal integrity and BP estimation accuracy across significant hemodynamic changes.

Soluble Epoxide Hydrolase Inhibitors For The Treatment Of Arrhythmogenic Cardiomyopathy And Related Diseases

Researchers at the University of California, Davis have developed an effective drug therapy, utilizing Soluble Epoxide Hydrolase (sEH) inhibitors, to prevent sudden death and treat the progression of myocardial dysfunction in patients with Arrhythmogenic Cardiomyopathy (“ACM”).

Cloud-Based Cardiovascular Wireless Monitoring Device

Cardiovascular disease is the leading cause of death both worldwide and in the United States, with associated costs in the U.S. reaching approximately $229 billion, each, in 2017 and 2018. Early detection, which can drastically reduce both rates of death and treatment costs, requires access to facilities and highly-trained physicians that can be difficult to access in rural areas and developing countries—despite their prevalence of cardiovascular disease. Computer-based models that use, e.g., PCG (phonocardiogram), EKG (electrocardiogram), or other cardiac data, are a promising route to bridge the gap in standard-of-care for these underserved areas. However, current algorithms are unable to account for demographic features, such as race, sex, or other characteristics, which are known to affect both the structure of the heart and presentation of heart disease. To address this problem, UC Berkeley researchers have developed a new, cloud-based system for collecting a patient's continuous cardiovascular data, monitoring for and detecting disease, and keeping a doctor informed about the cardiac health of the patient. The system sends an alarm when disease or heart attack are detected. To generate the most accurate diagnoses by taking into account demographic information, the system includes private and ethical dataset collection and model-training techniques.

Percutaneous Heart Valve Delivery System

Researchers at University of California, Irvine have developed a novel percutaneous heart valve delivery system for coordinated delivery, positioning, repositioning, and/or percutaneous retrieval of percutaneously implanted heart valves. This system enables optimal placement of the transcatheter heart valve and may thereby significantly reduce the risk of paravalvular aortic regurgitation, myocardial infarction, or ischemia related to improper positioning.

A distensible wire mesh for a cardiac sleeve

Researchers at University of California, Irvine have developed a novel distensible wire mesh that can be used in the heart surround sleeve component of a whole heart assist device. This wire mesh design enables the device to collapse and expand reversibly for a variety of uses, such as during the delivery process of the whole heart assist device as well as for allowing the device to contract and expand to physically pump the heart.

System for Transcatheter Grabbing and Securing the Native Mitral Valve’s Leaflet to a Prosthesis

Researchers at UC Irvine have developed an assembly of components that work together as a system for first grabbing, and then securing the native mitral valve’s leaflet to a prosthesis via transcatheter means.

Method to Improve the Accuracy of an Independently Acquired Flow Velocity Field Within a Chamber, Such as a Heart Chamber

Currently available techniques used to measure velocimetry within chambers, such as heart chambers, are prone to error due to the inherent limitations of imaging and computational modalities. UC Irvine researchers have developed a novel method that significantly improves the accuracy of velocimetry techniques inside a chamber regardless of the modality.

Water-Soluble Iron-Porphyrin Complexes Capable Of Acting As Antidotes For Carbon Monoxide Poisoning

CO poisoning is the most common form of poisoning worldwide. In the United States alone, over 50,000 emergency department visits each year are attributed to CO exposure. Despite the prevalence of CO poisoning, there is no clinically-approved antidote available.Current best practices involve placing the afflicted subject in fresh air, delivering 100% O2, or administering superatmospheric levels of O2 in a hyperbaric chamber. These treatments all serve to clear CO from the body by displacing it from metalloproteins with O2. The typical half-life of COHb in the bloodstream is 5.3 h, but hyperbaric O2 (1.5-3 atm) can decrease this half-life to < 1 h.Unfortunately, these large chambers are generally located in tertiary care centers to which patients must be transported. Moreover, hospitals typically house only a few such chambers, which would be rapidly overwhelmed in the event of a mass exposure.Although there are no clinically approved antidotes to CO poisoning, two strategies have been described: the creation of molecules that enhance the rate of release of CO from carboxyhemoglobin (formed during CO poisoning) and the creation of molecules that bind CO more strongly than physiologically important proteins such as hemoglobin.  

Integrin Binding to P-Selectin as a Treatment for Cancer and Inflammation

Researchers at the University of California, Davis have developed a potential drug target for cancer and inflammation by studying the binding of integrins to P-selectin.

Motor Drive Unit for Combined Optical Coherence Tomography and Fluorescence Lifetime Imaging of Intraluminal Structures

Researchers at the University of California, Davis have designed a motor drive unit that enables combined fluorescence lifetime imaging and optical coherence tomography of luminal structures.

Growth-Accomodating Transcatheter Pulmonary Valve System

UCI researchers have developed a novel transcatheter pulmonary valve (TPV) that addresses the current lack of options for children with progressive pulmonary valve regurgitation (PVR), which may lead to right ventricular (RV) dysfunction and failure. This TPV allows for implantation into patients of a younger age, preventing the progression of PVR and the RV issues that follow, and can also expand to accommodate the need for a larger pulmonary valve as the patient grows.

  • Go to Page: