Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Medical > Disease: Cancer

Categories

[Search within category]

Improving primary human NK cell expansion with a chimeric cytokine receptor

Natural Killer (NK) cells are innate lymphocytes with the ability to lyse tumor cells. One limitation of NK cells when encountering tumor cells is that they can’t control their own proliferation and expansion to increase their numbers at the tumor site. Current approaches to increase NK cell numbers and stimulate NK-cell anti-cancer functions include systemic administration of recombinant cytokines (IL-15, IL-2, or IL-12) that exhibit systemic or local toxicity or constitutive expression of IL-15 in transduced NK cells. Researchers at UCSF have engineered NK cells with a chimeric cytokine receptor (CCR) that provides autocrine signaling through the secretion of IFNγ, which subsequently enhances NK cell proliferation and function to support NK cell anti-cancer immune response specifically at the tumor site while avoiding recombinant cytokine- related toxicity. 

Methods to Prevent and Treat Diffuse Large and Other B Cell Lymphomas

Professor Ameae Walker from the University of California, Riverside, Professor Srividya Swaminathan from the City of Hope Beckman Research Institute and their colleagues have developed a method for the prevention and treatment of B cell lymphomas. This technology works by systemically inhibiting expression of one form of the set of cell surface molecules that allow cells to respond to prolactin. This highly specific technology suppresses the deleterious downstream effects of prolactin that promote and sustain abnormal B cells. This invention is advantageous compared to existing technologies: all measures in mouse models and analysis of human cells suggest it is nontoxic and therefore will have significantly fewer, if any, side effects. It may also be used together with anti-psychotics that elevate prolactin. Finally, the technology includes a method for screening populations susceptible to development of DLBCL and other B lymphomas for early signs of disease. Antimaia Acts at Three Stages of B Lymphoma Development: 1) Antimaia, a splice modulating oligonucleotide (SMO) that decreases expression of the long form of the prolactin receptor, reduces the number of premalignant cells and the formation of abnormal antibody-producing cells. This also improves the symptomatology of autoimmune disease. 2) Antimaia prevents the conversion of premalignant to overt malignant B cells. 3) Antimaia kills B lymphoma cells. Antimaia works by reducing the number of long and intermediate form prolactin receptors (LF/IF PRLR) without effect on short receptors (SFPRLR). PRL, prolactin; Bcl2, B cell lymphoma 2; Myc, a proto-oncogene.

Recombinantly produced p27 for use in screening inhibitors of Cdk4/6;Cyc6/p27 kinase complex

Cyclin Dependent Kinases (Cdk) 4 and 6 promote cell proliferation through their kinase activity. The active cellular form of the Cdk 4 or 6 enzyme forms a complex with both cyclin D (CycD) and p27 in vivo. Current therapeutics that target Cdk4 or 6 were generated in a complex that lacked p27 because of difficulties in expressing a recombinant form of p27. This technology describes a recombinantly produced engineered form of p27 that forms stable complexes with Cdk4/6 and CycD in vitro.

Single-Cell Analysis of Somatic Mutation Burden

Brief description not available

Transformable Smart Peptides as Cancer Therapeutics

Researchers at the University of California, Davis have developed smart, supramolecular, materials that can assemble into nanoparticles. These particles can then be used to target tumor cells.

Integrin Binding to P-Selectin as a Treatment for Cancer and Inflammation

Researchers at the University of California, Davis have developed a potential drug target for cancer and inflammation by studying the binding of integrins to P-selectin.

High Accuracy Machine Learning Model for Predicting Liver Cancer Risk

Researchers at the University of California, Davis have developed a method to predict if patients diagnosed with nonalcoholic fatty liver disease are at risk for developing liver cancer using a machine learning algorithm that analyzes a variety of easily available phenotypes and risk factors.

Humanized, potent monoclonal antibodies against murine and human integrin avb8 for cancer immunotherapy and prevention of corneal scarring after cataract surgery

Immunotherapy has revolutionized the treatment of many cancers, but even for the most sensitive tumor types most patients do not respond to current immunotherapy regimens. One major block to effective anti-tumor immunity is inhibition of the function of effector T cells by active TGFβ in tumors. For this reason, several major pharmaceutical companies have invested substantial resources in developing inhibitors of TGFβ ligands or TGFβ signaling to enhance anti-tumor immunity. However, because TGFβ isoforms (TGFβ1, 2 and 3) play multiple important homeostatic roles, highly effective inhibition of TGFβ function causes severe toxicity, as seen by the embryonic or perinatal lethality of knockout of each of the 3 mammalian TGFβs. Even the relatively ineffective TGFβ inhibitors that have entered clinical trials have been withdrawn because of unacceptable toxicity (cardiac valve thickening and skin cancer). We have thus spent the past 20 years developing drugs targeting TGFβ activating integrins, which only activate a small fraction of extracellular latent TGFβ in precise contexts relevant to specific diseases, with the goal of increasing precision and greatly reducing the potential for toxicity. 

Conjugates That Combine HDAC Inhibitors and Retinoids into Disease Preventatives/Treatments

Researchers at the University of California, Davis have developed methods for creating compositions with the potential to prevent or treat cancer or metabolic diseases. These compositions combine conjugates with covalently linked HDAC inhibitors and retinoids.

Sialic Acid Inhibitor in Cancer Treatment and Immunotherapy

Researchers at the University of California, Davis have developed a method of inhibiting sialic acid expression which is commonly related to bacterial and viral infections, metastatic cancer, and other pathogenic processes.

(SD2021-146) ANTICANCER AND ANTIFUNGAL SPLICE MODULATORS

While splice modulators have entered clinical trials, limited clinical efficacy in splicing factor mutation-driven malignancies, such as acute myeloid leukemia, has remained a challenge. There is a pressing unmet medical need for developing potent small molecule splice modulators for the treatment of a broad array of malignancies characterized by splicing deregulation.  However, the inability to practically access gram-scale lead molecules with viable pharmacological properties continues to hinder their application.

(SD2020-497) Light-activated tetrazines enable live-cell spatiotemporal control of bioorthogonal reactions

Bioorthogonal ligations encompass coupling chemistries that have considerable utility in living systems. Among the numerous bioorthogonal chemistries described to date, cycloaddition reactions between tetrazines and strained dienophiles are widely used in proteome, lipid, and glycan labeling due to their extremely rapid kinetics. In addition, a variety of functional groups can be released after the cycloaddition reaction, and drug delivery triggered by in vivo tetrazine ligation is in human phase I clinical trials. While applications of tetrazine ligations are growing in academia and industry, it has so far not been possible to control this chemistry to achieve the high degrees of spatial and temporal precision necessary for modifying mammalian cells with single-cell resolution.

Blood Based T Cell Biomarker For Cancer Diagnosis And Treatment

In cancer care, specific characteristics of T cells can be used to measure a patient’s response to immunotherapy. Using single-cell RNA-sequencing coupled with TCR sequencing, scientists at UCSF and Harvard detected CD8+ T cell clones shared between blood and tumor in mice and melanoma patients, characterized these matching clones in blood and tumor, and identified potential biomarkers for their isolation in the blood. Their method reveals specific protein signatures (biomarkers) on the surface of T cells that can be therapeutically targeted to treat melanoma and other forms of cancer. It presents a very attractive alternative to obtaining invasive biopsy samples from the tumor, and can be done much more quickly.  

Optimized Virus-like Particles for Cas9 RNPs & Transgene/HDR Template Delivery

The inventors have developed optimized methods for using virus-like particles for the co-delivery of Cas9 ribonucleoprotein complexes and: a lentiviral genome that encodes a large transgene, such as a chimeric angtigen receptor (CAR) transgene a lentiviral genome that does not encode a sgRNA expression cassette a method for nucleofecting VLPs + homology directed repair (HDR) donor template together to enhance HDR in treated cells  

Fem1b Inhibitors

UC Berkeley researchers have discovered novel, specific Fem1b inhibitors. Fem1b is essential in lymphoma and lung cancer cells.  Fem1b inhibition could be beneficial in cancer, metabolic disease, obesity, diabetes and other diseases. 

Inhibitors of Bromodomain and Extra-Terminal (BET) Family Proteins as Potential Treatments for Drug-Resistant Tumors

Researchers at the University of California, Davis have developed small molecule inhibitors for use in treating drug-resistant tumors – including cancerous tumors.

Intranasal Delivery of Oligonucleotides for Neurodegenerative Diseases

Delivery of oligonucleotide therapy to the central nervous system remains challenging. Neurodegenerative diseases, such as Huntington’s disease and Spinal Muscular Atrophy, can require intrusive and regular treatments, therefore a non-invasive delivery system would be very beneficial to patients. UC Irvine researchers have proposed a new method of therapeutic delivery utilizing a SARS-CoV-2 pseudovirus. Delivered intranasally, this system has the ability to bypass the blood brain barrier, making it an exciting approach to decrease risk for patients and ease the treatment process.

Bioengineered Wnt5a Therapeutics For Advanced Cancers

Researchers at the University of California, Davis have developed RNA-based therapeutics to treat Wnt5A-expressing cancers, including treatment-resistant prostate cancer.

  • Go to Page: