Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Materials & Chemicals > Nanomaterials

Categories

[Search within category]

Design Random Heteropolymer To Transport Proton Selectively And Rapidly

Despite decades of effort, it remains challenging, if not impossible, to achieve similar transport performance similar to natural channels. Inspired by the known crystal structures of transmembrane channel proteins, protein sequence-structure-transport relationships have been applied to guide material design. However, producing both molecularly defined channel sizes and channel lumen surfaces that are chemically diverse and spatially heterogeneous have been out of reach. We show that a 4-monomer-based random heteropolymer (RHP) exhibits selective proton transport at a rate similar to those of natural proton channels. Statistical control over the monomer distribution in the RHP leads to well-modulated segmental heterogeneity in hydrophobicity, which facilitates the single RHP chains to insert into lipid bilayers. This in turn produces rapid and selective proton transport, despite the sequence variability among RHP chains. We have demonstrated the importance of:the adaptability enabled by the statistical similaritythe modularity afforded by monomer chemical diversity to achieve uniform behavior in heterogeneous systems. 

Preserving Protein Function Via Statistically Random Heteropolymers

Protein-based materials have the potential to change the current paradigm of materials science. However, it still remains a challenge to preserve protein hierarchical structure and function while making them readily processable. Protein structure is inherently fluid, and it is this property that contributes to their fragility outside of their native environment. Through the use of rationally designed statistically random heteropolymers, it is possible to stabilize proteins at each hierarchical level and process them in organic solvents, a common need for materials fabrication. The chemical and architectural complexities of statistically random heteropolymers provide a modular platform for tunable protein-polymer-solvent interactions. This provides opportunities not offered by small molecule surfactants or amphiphilic block copolymers. Through evaluation of horseradish peroxidase and green fluorescent protein structure, we show that statistically random heteropolymers can stabilize enzymes. Allowing for activity retention when stored in organic solvent, over 80% activity was observed after 24 hours. Furthermore, horseradish peroxidase and chymotrypsin proteins, when encapsulated in statistically random heteropolymers, are still accessible to their substrates while remaining inaccessible to the denaturing organic solvent. Statistically random heteropolymers have potential in creating stimuli-reponsive materials and nanoreactors composed of proteins and synthetic materials.

Homogeneous Freestanding Luminescent Perovskite Organogel with Superior Water Stability

UCLA researchers in the Department of Materials Science and Engineering have developed a perovskite-embedded organogel with superior water stability and versatile design and mechanical properties.

Nanoparticles-Enabled Casting of Bulk Ultrafine Grained/Nanocrystalline Metals

UCLA researchers in the Department of Mechanical and Aerospace engineering have fabricated bulk, thermally stable ultrafine grained/nanocrystalline metals using conventional casting techniques.

Colorimetric Detoxifying Sensors for Fumigants and Aerosol Toxicants

Researchers at the University of California, Davis have developed a colorimetric sensor than can detect and detoxify fumigants simultaneously. 

2D Perovskite Stabilized Phase-Pure Formamidinium Perovskite Solar Cells and Light Emitting Diodes

UCLA researchers in the Department of Materials Science and Engineering have developed a novel lead halide perovskite solar cell based on a mixture of formamidinium perovskites and 2D perovskites.

Scalable Manufacturing of Copper Nanocomposites with Tunable Properties

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a cost-effective method to produce copper-based nanocomposites with excellent mechanical, electrical and thermal properties.

Creation process for a low-density, interconnected metallic foam between nanowires

Researchers at the University of California - Davis, Lawrence Livermore National Laboratory, and Sandia National Laboratory have found an innovative way to create a foam that allows for the creation of interconnected nanostructures between metallic nanowires that allow for the channelization of electrical, magnetic, optical, or chemical properties.

New Classes Of Cage And Polyhedron And New Classes Of Nanotube And Nanotube With Planar Faces

UCLA researchers have developed a novel algorithm that can be used to design unique self-assembled molecules and nanostructures.

Material For Thermal Regulation

Researchers at UCI have developed a lightweight, flexible thermal material that, due to the extent that it is stretched, allows for tunable control of heat flow.

High Performance Platinum-Based Catalyst Combined with Carbon Support Engineering

UCLA researchers in the Department of Materials Science and Engineering have developed a fuel cell catalyst system comprised of platinum-based alloys with a novel carbon support. The fuel cell has improved mass activity targets and increased stability.

Ultra-Sensitive Polybrominated Diphenyl Ether (PBDE) Detector

Polybrominated diphenyl ethers (PBDEs) are a common brominated flame retardant, which are commonly found in consumer products. Because they are not chemically bound to polymers, PBDEs are blended in during formation and have the ability to migrate from products into the environment.  Studies suggest that PBDEs pose potential health risks such as hormone disruptors, adverse neurobehavioral toxins and reproductive or developmental effects.  For this reason it is important to have the capability to sense the presence of PBDEs even in low concentrations.

Pressure Sensitive Fabrics

Piezoelectric sensors have long existed to monitor applied pressures between two objects. In large applications with malleable substrates or where low cost is key, individual piezoelectric sensors are not practical. A variety of applications exist where monitoring the pressure being applied to a soft surface would providing meaningful insights into the system or subject under observation. For instance, in a long-term care setting where patients need to be monitored for pressure ulcers, a bedding material that could sense the pressure points between a person’s body and the mattress could alert care givers that an adjustment in body position is warranted. Likewise, in a sports training application, a pressure sensitive boxing ring canvas could track a boxer’s footwork, or punching power and hand speed if applied to the inside of a punching bag.   Pressure sensitive soft toys could also benefit from feedback that might differ when a child scratches behind their stuffed animal’s ears vs. rubbing its belly.  To achieve discrete sensing in these applications, a low cost bulk sensing system is needed.

Double-Negative-Index Ceramic Aerogels For Thermal Superinsulation

UCLA researchers in the Departments of Chemistry and Biochemistry and Materials Science and Engineering have developed a novel ceramic aerogel material that has robust mechanical and thermal stability under extreme conditions.

Thermodynamic Integration Simulation Method for Filling Molecular Enclosures Using Spliced Soft-Core Interaction Potential

Researchers have developed a simulation method to determine the properties of molecular enclosures based on slow growth thermodynamic integration (SGTI).

A Solution Method To Improve Nanowires Connection And Its Applications In Electro-Related Areas

UCLA researchers in the Department of Materials Science and Engineering have developed a simple solution-based method for fabricating highly conductive transparent silver nanowire (AgNW) films with excellent adhesive capabilities and noteworthy electrical, mechanical, and optical performance.

Generic Method for Controlled Assembly of Molecules

Researchers at the University of California, Davis, in collaboration with researchers at IBM, have developed a widely applicable method to assemble molecules regardless of their intrinsic self-assembly properties.

One Step Process of Forming Complex Coacervation During Spray Drying

Researchers at the University of California, Davis have developed a formation of complex coacervate microparticles by spray drying.

Super Ceramics With Self-Dispersed Nanoparticles Via Casting

UCLA researchers in the Departments of Mechanical and Aerospace Engineering and Materials Science and Engineering have developed a novel casting method to fabricate high performance bulk ceramic materials containing dispersed nanoparticles.

Preparation Of Functionalized Polypeptides, Peptides, And Proteins By Alkylation Of Thioether Groups

UCLA researchers in the Departments of Chemistry, Physics, and Bioengineering, led by Dr. Tim Deming of the Bioengineering Department, have developed new methods for adding different functional groups on polypeptides.  The UCLA researchers have used this method to create a platform to create and modify nanoscale vesicles and hydrogels for use in nanoscale drug delivery particles, injectable drug depots, imaging and detection, industrial biomaterials, and wound management.

A Method Of Making Carbon Coated Oxides As High-Performance Anode Materials

UCLA researchers in the Department of Materials Science and Engineering have developed a carbon-coated silicon nanoparticle-based electrode material for lithium-ion batteries with high energy density and long lifetime.  They have also developed a scalable fabrication method for this material.

Amphiphilic Derivatives Of Thioether Containing Block Copolypeptides

UCLA researchers in the Department of Bioengineering have developed a new method to generate amphiphilic block copolypeptides.

Micro- and Nanocomposite Support Structures for Reverse Osmosis Thin Film Membranes

UCLA researchers in the Department of Civil and Environmental Engineering have invented a novel nanofiltration (NF) and reverse osmosis (RO) composite membrane for water desalination applications.

Actively Controlled Microarchitectures with Programmable Bulk Material Properties

Professor Jonathan Hopkins and colleagues have developed amechanical programmable metamaterial consisting of an array of actively, independently controlled micro-scale unit cells. This technology allows for the application of materials which have instantly changeable, programmable properties that can exceed those of conventional, existing materials.

  • Go to Page: