Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Materials & Chemicals > Nanomaterials


[Search within category]

Nano Biosensing System

Metabolites can provide real-time information about the state of a person’s health. Devices that can detect metabolites are commercially available, but are unable to detect very low concentrations of metabolites. Researchers at UCI have developed surfaces that use nanosensors to detect much lower concentrations of such metabolites.

Conductive and Elastic Nanocellulose Aerogels

Researchers at the University of California, Davis have developed conductive nanocellulose aerogels as building blocks for mechanical strain sensors and coaxial aerogel fibers for cryo- and thermo-protective insulation.

Multiple-Patterning Nanosphere Lithography

Researchers led by Paul Weiss from the Department of Chemistry and Biochemistry at UCLA have developed a novel technique that solves the scalability issue in the fabrication of three-dimensional nanostructures.

Guided Magnetic Nanospears For Targeted And High-Throughput Intracellular Delivery

UCLA researchers in the Department of Chemistry & Biochemistry and Department of Molecular & Medical Pharmacology have developed novel magnetic nanostructures that can be used to carry and/or deliver biomolecular cargo intracellularly to cells.

Intercalated Graphene Layers for Charge Extraction and Enhanced Light Absorption

Quantum dots (QDs) have shown extraordinary optical properties based on their size-tunable band gap and low-processing cost that have allowed the realization of promising photodetectors and solar cells. However, the short diffusion length and mobility in QD films remains a main limitation and subject of intensive research as the key to improve the performance of QD based optoelectronic devices. A very innovative strategy to overcome the low mobility of QDs is to use them as sensitizer with high conductive systems such as graphene, 2D semiconductors and Si. The combination of graphene (Gr) and QD into a hybrid device splits the photoconversion/detection “tasks” between these two complementary nanomaterials: QDs absorb light and generate photocharges, while graphene takes care of charge collection for efficient transport.

Photo-induced Metal Printing Technique for Creating Metal Patterns and Structures Under Room Temperature

UCLA researchers in the Department of Materials Science and Engineering have developed a low-temperature metal patterning technique.

Graphene Nanomesh As A Glucose Sensor

UCLA researchers in the Departments of Chemistry & Biochemistry and of Materials Science & Engineering have developed a glucose sensor based on a graphene nanomesh (GNM) material. The nanoscale GNM glucose sensor provides the potential for in vivo glucose sensing with high selectivity and high sensitivity.

A Bi-Functional Lewis Base Additive For Microscopic Homogeneity In Perovskite Solar Cells

UCLA researchers in the department of Materials Science & Engineering have discovered a novel Lewis base additive that decreases heterogeneity in perovskite thin films.

High Stability PtNiX-M Electrochemical Catalyst

UCLA researchers in the Department of Material Science and Engineering have invented a novel and highly stable platinum-based catalyst material for fuel cell technologies.

Stable Alloy Of Palladium Hydride With High Hydrogen Content

Researchers led by Yu Huang from the Department of Chemistry and Biochemistry at UCLA have developed a cheap and simple way to create palladium hydride with high hydrogen content.

High Performance PtNiCuMo Electrochemical Catalyst

UCLA researchers in the Department of Materials Science and Engineering have developed multimetallic PtNiCuMo nano octahedral catalyst that has demonstrated greatly improved mass activity, specific activity, and stability for application in fuel cells.

Supraballs: Self-assembled Melanin Particles for Structural Color Production

Conventional pigments are used to color materials and are subject to fading in ultraviolet light as well having the potential toxicity associated with conjugated organic pigments. Recently, there has been an interest in replacing these conventional pigments with so called structural colors which allow for the creation of a spectrum of nonfading colors without pigments. Moreover, these new structures create color and cause light to scatter. The creation of these new structures have been challenging, but researchers have developed a technique that can transcend these obstacles.

Efficient Synthesis of Nanoscale Transition Metal Borides

Researchers at UCR have developed a simple and efficient transition metal boride synthesis.  The transition metal borides are synthesized by directly heating metal chloride and elemental boron in the presence of reducing tin (Sn) between temperatures of 700-900 °C for about eight hours. The resulting transition metal boride products are single-phase nanocrystalline materials with an average size of 100 nm. MoB2, MoB, Mo2B4, Mo2B, CoB, FeB, VB2, NbB, NbB2, TaB2 and WB were all synthesized using this new synthetic method.   Fig. 1a shows a sealed quartz tube that was heated to ~800 °C. The pellet at the bottom of the tube contains the desired transition metal boride product. The top of the tube contains crystallized SnCl2. Fig. 1b is an X-ray diffraction (XRD) pattern taken of crystallized SnCl2.         Fig. 2a is a comparison of the XRD patterns of  MoB2 synthesized by the previously known method of solid state metathesis (red) and the new method described herein (blue).  Fig. 2b is a high resolution scanning electron microscope (HRSEM) image of MoB2 synthesized by previously known solid state metathesis (SSM-MoB2) and Fig. 2c shows materials synthesized by the new method. SSM-MoB2 is contaminated by β-MoB and Mo, whereas Sn-MoB2 reaction products are single phase without contamination. HRSEM shows nanospheres and nanorods for SSM-MoB2 and Sn-MoB2, respectively.  

Polyrotaxane Nanoparticles for Delivery of Large Plasmid DNA in Duchenne Muscular Dystrophy

UCLA researchers have designed, synthesized, and validated a polyrotaxane nanocarrier for targeted delivery of large plasmids for gene therapy applications for treatment of Duchenne muscular dystrophy and cancer.

High-Throughput Microfluidic Gene-Editing via Cell Deformability within Microchannels

UCLA researchers in the Departments of Pediatrics and Chemistry & Biochemistry have developed a microfluidic device for delivery of biomolecules into living cells using mechanical deformation, without the fouling issues in current systems.

Graphene-Polymer Nanocomposite Incorporating Chemically Doped Graphene-Polymer Heterostructure for Flexible and Transparent Conductive Films

UCLA researchers in the Department of Electrical Engineering have invented a novel graphene-polymer nanocomposite material for flexible transparent conductive electrode (TCE) applications.

Plasmonic Nanoparticle Embedded PDMS Micropillar Array and Fabrication Approaches for Large Area Cell Force Sensing

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a novel cell force sensor platform with high accuracy over large areas.

Compositions Of Polyion Complex Polypeptide Hydrogels

UCLA researchers in the Department of Bioengineering have developed a new class of cell-compatible copolypeptide hydrogels that possess chain conformation directed polyion complex (PIC) supramolecular architectures.

Scalable And Inexpensive Production Of Polymer-Metal Nanocomposite By Thermal Drawing

UCLA researchers have developed a fabrication process for uniformly distributing metallic nanoparticles within polymer fibers.

Materials for Autonomous Tracking, Guiding, Modulating, and Harvesting of Energetic Emissions

UCLA researchers in the Department of Materials Science and Engineering have developed a novel photo-responsive polymer that can real-time detect, track, modulate, and harvest incident optical signals and a broad range of energetic emissions at high accuracy and fast response rate.

Full Color Quantum Dot Patterning Via Soft Lithography

UCLA researchers in the Department of Chemistry and Biochemistry have developed a novel quantum dot patterning method via soft lithography. It allows cost-effective, large-scale and high resolution full-color quantum dots patterning, which will revolutionize the nanoelectronics and QD-based display industries.

Selective Chemical Bath Deposition of IrOx on Thin Film Structure

UCLA researchers in the Department of Bioengineering have developed a selective chemical bath deposition method to create IrOx thin films.

Robust Mesoporous Nife-Based Catalysts For Energy Applications

UCLA researchers in the Department of Chemistry and Biochemistry have used selective dealloying method to produce novel high-performance, robust, and ultrafine mesoporous NiFeMn-based metal/metal oxide composite oxygen-evolving catalysts.

High Performance Transition-Metal Doped PtNi Catalysts

Researchers led by Yu Huang from the Department of Material Science and Engineering at UCLA have developed a novel oxygen reduction reaction (ORR) catalyst by doping platinum-nickel octahedrals with transition metals.

Synthesis Of Graphene Nanoribbons From Monomeric Molecular Precursors Bearing Reactive Alkyne Units

Researchers in the Department of Chemistry and Biochemistry have developed a novel graphene nanoribbon synthesis, which have numerous applications in electronic devices.

  • Go to Page: