Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Materials & Chemicals > Nanomaterials


[Search within category]

Supraballs: Self-assembled Melanin Particles for Structural Color Production

Conventional pigments are used to color materials and are subject to fading in ultraviolet light as well having the potential toxicity associated with conjugated organic pigments. Recently, there has been an interest in replacing these conventional pigments with so called structural colors which allow for the creation of a spectrum of nonfading colors without pigments. Moreover, these new structures create color and cause light to scatter. The creation of these new structures have been challenging, but researchers have developed a technique that can transcend these obstacles.

Efficient Synthesis of Nanoscale Transition Metal Borides

Researchers at UCR have developed a simple and efficient transition metal boride synthesis.  The transition metal borides are synthesized by directly heating metal chloride and elemental boron in the presence of reducing tin (Sn) between temperatures of 700-900 °C for about eight hours. The resulting transition metal boride products are single-phase nanocrystalline materials with an average size of 100 nm. MoB2, MoB, Mo2B4, Mo2B, CoB, FeB, VB2, NbB, NbB2, TaB2 and WB were all synthesized using this new synthetic method.   Fig. 1a shows a sealed quartz tube that was heated to ~800 °C. The pellet at the bottom of the tube contains the desired transition metal boride product. The top of the tube contains crystallized SnCl2. Fig. 1b is an X-ray diffraction (XRD) pattern taken of crystallized SnCl2.         Fig. 2a is a comparison of the XRD patterns of  MoB2 synthesized by the previously known method of solid state metathesis (red) and the new method described herein (blue).  Fig. 2b is a high resolution scanning electron microscope (HRSEM) image of MoB2 synthesized by previously known solid state metathesis (SSM-MoB2) and Fig. 2c shows materials synthesized by the new method. SSM-MoB2 is contaminated by β-MoB and Mo, whereas Sn-MoB2 reaction products are single phase without contamination. HRSEM shows nanospheres and nanorods for SSM-MoB2 and Sn-MoB2, respectively.  

Polyrotaxane Nanoparticles for Delivery of Large Plasmid DNA in Duchenne Muscular Dystrophy

UCLA researchers have designed, synthesized, and validated a polyrotaxane nanocarrier for targeted delivery of large plasmids for gene therapy applications for treatment of Duchenne muscular dystrophy and cancer.

Selective Doping of Single-Walled Carbon Nanotubes to Form Conducting Composites

A selective method of charge-transfer doping single-walled nanotubes with conjugated polyelectrolytes (CPEs) to form p-type or n-type conductive composites.

High-Throughput Microfluidic Gene-Editing via Cell Deformability within Microchannels

UCLA researchers in the Departments of Pediatrics and Chemistry & Biochemistry have developed a microfluidic device for delivery of biomolecules into living cells using mechanical deformation, without the fouling issues in current systems.

Graphene-Polymer Nanocomposite Incorporating Chemically Doped Graphene-Polymer Heterostructure for Flexible and Transparent Conductive Films

UCLA researchers in the Department of Electrical Engineering have invented a novel graphene-polymer nanocomposite material for flexible transparent conductive electrode (TCE) applications.

Plasmonic Nanoparticle Embedded PDMS Micropillar Array and Fabrication Approaches for Large Area Cell Force Sensing

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a novel cell force sensor platform with high accuracy over large areas.

Compositions Of Polyion Complex Polypeptide Hydrogels

UCLA researchers in the Department of Bioengineering have developed a new class of cell-compatible copolypeptide hydrogels that possess chain conformation directed polyion complex (PIC) supramolecular architectures.

Scalable And Inexpensive Production Of Polymer-Metal Nanocomposite By Thermal Drawing

UCLA researchers have developed a fabrication process for uniformly distributing metallic nanoparticles within polymer fibers.

Materials for Autonomous Tracking, Guiding, Modulating, and Harvesting of Energetic Emissions

UCLA researchers in the Department of Materials Science and Engineering have developed a novel photo-responsive polymer that can real-time detect, track, modulate, and harvest incident optical signals and a broad range of energetic emissions at high accuracy and fast response rate.

Full Color Quantum Dot Patterning Via Soft Lithography

UCLA researchers in the Department of Chemistry and Biochemistry have developed a novel quantum dot patterning method via soft lithography. It allows cost-effective, large-scale and high resolution full-color quantum dots patterning, which will revolutionize the nanoelectronics and QD-based display industries.

Selective Chemical Bath Deposition of IrOx on Thin Film Structure

UCLA researchers in the Department of Bioengineering have developed a selective chemical bath deposition method to create IrOx thin films.

Robust Mesoporous Nife-Based Catalysts For Energy Applications

UCLA researchers in the Department of Chemistry and Biochemistry have used selective dealloying method to produce novel high-performance, robust, and ultrafine mesoporous NiFeMn-based metal/metal oxide composite oxygen-evolving catalysts.

High Performance Transition-Metal Doped PtNi Catalysts

Researchers at UCLA have developed a novel doped platinum-nickel catalyst that has demonstrated record specific activities and mass activity that are orders of magnitude higher than that of commercially available advanced platinum-based catalyst.

Synthesis Of Graphene Nanoribbons From Monomeric Molecular Precursors Bearing Reactive Alkyne Units

Researchers in the Department of Chemistry and Biochemistry have developed a novel graphene nanoribbon synthesis, which have numerous applications in electronic devices.

Transparent Bulk Photoluminescent Quantum Dots/Polymer Nanocomposite

UCLA researchers in the Department of Materials Science and Engineering have developed highly transparent, photoluminescent nanocomposites containing record-high levels of quantum dots.

Supercapacitor With Non-Planar Electrodes

UCLA researchers have developed a solid-state supercapacitor structure with non-planar electrodes and ionogels dielectric medium.

Pore Size Engineering Of Porous Carbons Using Covalent Triazine Frameworks As Precursors

UCLA researchers in the Department of Chemistry and Biochemistry have developed a new method to engineer uniform pore sizes within porous carbon utilizing a covalent triazine frameworks as precursors.

Accelerating palladium nanowire hydrogen sensors using engineered nanofiltration layers

Researchers at UCI have developed a method for enhancing existing hydrogen gas sensors, leading to as much as a 20-fold improvement in sensor response and recovery times.

Diels-Alder Chemistry for Bioconjugation and Incorporation into Non-Natural Amino Acids

A bioconjugation method to covalently link molecular entities to polypeptides such as antibodies using a simple one-pot process.

3D Magnetic Topological Structures for Information Storage

Researchers at the University of California, Davis, have developed a new way to directly create 3-dimensional topological magnetic structures that allows for efficient information storage with potentially low energy dissipation.

Architected Material Design For Seismic Isolation

Just in the Los Angeles area alone, USGS database shows a 95.23% change of a major earthquake occurring. While there are a variety of seismic devices already installed for the protection of high value structures, other customizable, cost efficient devices currently don’t exist for a wide range of other structures such as apartments, residential homes, or event moderate to high value equipment and artifacts. University of California has invented a novel material and method for creating cost efficient seismic protection devices for all types of such structures.

Process For Electrodepositing Manganeese Oxide With Improved Rate Capabilities For Electrical Energy Storage

The invention is a novel method for enhancing the energy, power and performance of lithium ion batteries. It applies a new process for electrodepositing Manganese Oxide in a way that improves the electrical properties as well as the rate at which the battery can operate. Using this method, the energy storage capabilities is boosted significantly; making it faster, more reliable and enabling various applications to become more dependent on electric/battery solutions.

Hydrogen Gas Sensors Based On Patterned Carbon Nanotube Ropes

This is a fabrication method for hydrogen gas sensors; these sensors have more rapid response times and are more sensitive than current detection techniques.

Anti-Microbial Contact Lens With Ocular Drug Delivery

Anti-microbial, anti-fungal drug eluting contact lens for the controlled release of ophthalmic therapeutics.

  • Go to Page: