Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Environment > Remediation

Categories

[Search within category]

A High Capacity Reusable Cationic Material [Ag-Bipy+] [No3] For The Removal Of Perchlorate From Water

Perchlorate is a chemical usually produced commercially that is soluble in water, can easily travel through aqueous systems, and can persist for decades in groundwater. Even in trace amounts, perchlorate can disrupt thyroid hormone production, which can have harmful side effects.  These particular characteristics have made contamination of ground water by perchlorate a major widespread issue, and its decontamination a major challenge. Currently available techniques for removing perchlorate include high pressure water washout and single-use resins for capturing perchlorate.

Determination Of The Optimal Fluid Pulses For Enhancement Of Reservoir Permeability And Productivity

Oil and natural gas extraction techniques commonly rely on hydraulic fracturing to induce and/or improve fluid flow in low permeability rocks. Hydraulic fracturing can be environmentally costly though as it uses a variety of materials, including chemicals and solids, injected into the ground to mechanically fracture and artificially maintain cracks in the subsurface. A UC Santa Cruz researcher has developed a method that uses site-specific reservoir properties to determine the best frequency of forcing to clear fractures and increase fluid flow with pressure oscillations. 

Roll-To-Roll Based 3D Printing Through Computed Axial Lithography

The inventor has developed systems and methods for performing continuous 3D roll-based additive manufacturing. This invention is distinct from roll-based micro/nanomanufacturing methods such as imprint lithography, gravure printing, and photo-roll lithography because it enables production of high aspect ratio reentrant features and voids in a single step that are difficult or even impossible with the existing methods.

High Fidelity 3D Printing Through Computed Axial Lithography

The inventor has developed novel algorithms and metrology methodologies, including real-time in-situ imaging of part formation, in computed axial lithography printing (CALP). CALP is a form of continuous 3D roll-based additive manufacturing which is distinct from roll-based micro/nanomanufacturing methods such as imprint lithography, gravure printing, and photo-roll lithography because it enables production of high aspect ratio reentrant features and voids in a single step that are difficult or even impossible with the existing methods.

A Novel Catalyst for Aqueous Chlorate Reduction with High Activity, Salt Resistance, and Stability

Prof. Jinyong Liu’s lab at UCR has developed a novel heterogeneous catalyst for aqueous ClO3− reduction. The catalyst contains earth-abundant molybdenum (Mo) and is 55-fold more active than palladium on carbon (Pd/C). Under 1 atm H2 and room temperature, the bimetallic catalyst (MoOx−Pd/C) enables rapid and complete reduction of ClO3− in a wide concentration range (e.g., 1 μM to 1 M) and exhibits strong resistance to concentrate salts such as chloride, sulfate, and bromide at 1 to 5 M. In a batch reactor setup, the catalyst was reused for twenty cycles of 0.18 M ClO3− reduction and no activity loss was observed. Fig. 1 shows the effect of concentrated salts on the reduction of 1 mM ClO3− by the MoOx-Pd/C catalyst at a loading of 0.2 g/L. The reactions were conducted at 25 oC and under 1 atm H2. Fig. 2 shows the reduction of 1 M ClO3− in DI water and the treatment of a synthetic chlor-alkali waste brine sample (0.17 M of ClO3− in 3.6 M of NaCl) by 0.5 g/L MoOx-Pd/C.   Fig. 3 shows the profiles of the reduction of 0.18M ClO3− spikes in a multiple-spike reaction series. The decrease of activity was only caused by the gradual build-up of concentrated Cl− (see details in the publication).  

High Performance Iron Electrocoagulation Systems for Removing Water Contaminants

The inventors have developed an iron electrocoagulation (Fe-EC) system for arsenic removal. The system offers a highly effective, low cost, robust method for removing arsenic from groundwater used for drinking, at community scale (10,000 liters per day).The main advance of this invention is to replace the assembly of inter-digited flat steel plates with an assembly of spiral-wound or folded and inter-digited two steel sheets separated only with perforated insulating spacers. This substantially reduces the energy consumption in comparison to other Fe-EC reactors, and allows for larger flow rates for a given reactor size than the standard inter-digited flat plate configuration. This advance is possible because the system relies on: externally added (ppm quantities) of oxidizer (H2O2), and a newly-discovered effect that allows consistent iron dissolution at high current densities. High current density also produces copious quantities of micro-bubbles of H2 gas, which flushes the space between the electrodes continuously during operation, preventing the clogging that has defeated earlier attempts.In a typical Fe-EC reactor, parallel inter-digited plates of mild steel are inserted into the contaminated water and a small DC voltage is applied between alternate plates to promote anodic dissolution of F(0) metal to release Fe(II) ions into the contaminated water. The Fe(II) ions react with dissolved oxygen in the water to produce Fe(III) that is used to capture the contaminants. Typically, an assembly of flat inter-digited parallel steel plates, with nearest neighbor spaced 2 cm to 5 cm, is used in Fe-EC reactors. Occasionally, externally added or in-situ produced oxidants may be used (e.g. externally added strong oxidants such as H2O2, O3, Chlorine, Permanganate, etc., or in-situ produced strong oxidants such as H2O2 using carbon based cathodes). 

Buffer-Free Process Cycle For Co2 Sequestration And Carbonate Production From Brine Waste Streams With High Salinity

Researchers in the UCLA Department of Civil and Environmental Engineering have developed a novel process cycle to separate and enrich divalent cations such Ca2+ and Mg2+ from high salinity brine solutions for CO2 mineralization.

System and Method for Flexible Low-Energy Membrane-Based Liquid Purification

UCLA researchers in the Department of Chemical and Biomolecular Engineering have developed a platform and method for membrane-based water purification and desalination that combines operational flexibility with energy efficiency, allowing effective treatment and desalination of raw feed water over a wider range of solute concentrations and product recovery.

Hydrocarbon Production, H2 Evolution And CO2 Conversion By Whole Cells Or Engineered Azotobacter Vinelandii Strains

Using metal catalysts in industrial synthesis of hydrocarbons for fuels can be costly, inefficient, and harmful to the environment. This simple approach uses genetically-modified soil bacterium to synthesize valuable hydrocarbons using recycled components. This novel process is environmentally-friendly and is more cost- and energy-efficient than current industrial synthesis.

Biomass-Derived Polymers And Copolymers Incorporating Monolignols And Their Derivatives

UCLA researchers in the Departments of Bioengineering, Chemistry and Biochemistry have developed a novel synthetic strategy for the fabrication of biomass-derived polymers incorporating underutilized lignin derivatives.

New Strategy for Biofilm Control

Biofilms are a pervasive problem across numerous global industries, including oil & gas production and healthcare. Microbes have spent millennia learning how to survive, and society remains in critical need of effective strategies to remove them without harsh or damaging processes. Microbial biofouling currently costs tens of billions of dollars a year to deal with, from fouling of filtration membranes, to the corrosion of ship hulls. New biofilm clearance strategies are now required, to harness microbiological understanding to efficiently eradicate microbial contamination.

Methods for Fabrication of Electric Propulsion Tips

The technology is a method for fabrication of silicon microfabricated emitter tips.This process has two-step etching process which utilizes field emission electric propulsion (FEEP) and indium propellant.

Carbon Sequestration Using a Magnetic Treatment System

The technology is a technique for the capture and removal of carbonates in natural water sources.It features the use of an alternating electromagnetic field (AMF) to induce the formation of calcium carbonate or other carbonate compounds in suspension in water source. Additionally, carbonate compounds are removed using filtration device.

Palladium Alloy Hydride Nano Materials

Researchers at UCLA have synthesized a range of intermetallic palladium hydride alloy (Pd/M-H) nanocrystals using a low cost solution process that avoids the use of surfactants and strong reducing agents.

CeramicAsh: Material and Method

Researchers at UCLA have developed a method for reducing the manufacturing costs associated with chemically bonded ceramics. 

Bulking And Foaming Filamentous Bacteria Nucleic Acid Sequences For Multiple Simultaneously Identifications

Researchers in UCI’s Department of Environmental & Civil Engineering have developed a revolutionary solution to the problem bulking and foaming organisms found in wastewater treatment systems. Their kit provides a fast, accurate and extremely cost effective method of identifying these troublesome organisms to allow rapid treatment prior to the onset of costly post “bloom” remediation.

Hybrid Extraction Process For Separation Of Americium From Trivalent Lantanides

Researchers in UCI’s Department of Chemical Engineering/Material Science have developed a process to separate americium (Am) from trivalent lanthanides, both present in spent nuclear fuel. This separation is necessary for future nuclear fuel cycles.

Monoclonal Antibodies And Immunoassay Specific For The Toxic Congeners Of Polychlorinated Biphenyls

Polychlorinated biphenyls (PCBs) are ubiquitous environmental pollutants with diverse toxic, teratogenic, reproductive, immunotoxic, and tumorigenic effects. Three of the least abundant of the 209 PCB isomers (congeners) are the most toxic and most difficult to quantify. These are 3,4,3',4'-tetrachlorobiphenyl, 3,4,3',4',5'-pentachlorobiphenyl, and 3,4,5,3',4',5'-hexachlorobiphenyl (IU-PAC No. 77, 126, and 169, respectively). An immunizing hapten was designed to retain the 3,4,3',4' chlorine-substitution pattern and coplanarity characteristic of these toxic congeners. The optimal competitors for immunoassay were weaker binding distinctive single-ring fragments of the PCBs. A monoclonal antibody designated S2B1 was derived and used in direct (antibody-capture) competitive enzyme immunoassays (EIAs). The EIAs are highly specific for non-ortho-substituted congeners and do not recognize the more prevalent but much less toxic noncoplanar PCB congeners or 2,3,7,8-tetrachlorodibenzo-p-dioxin, 2,3,7,8-tetrachlorodibenzofuran, or dichlorobenzenes. Hapten and competitor design for this assay suggests a basis for development of sensitive EIAs for other classes of PCB congeners. Reference: Chiu, YW, et al. 1995 Anal Chem. 67::3829-39

Detecting Arsenic In Groundwater Using Nanostructures

The presence of Arsenic (As) in groundwater, even at low levels, is a significant public health problem -- especially in economically undeveloped regions. However, methods for detecting this toxin in groundwater are problematic because they are not sensitive enough to detect low levels of As, not conducive to fast in-field detection, and/or cost-prohibitive (particularly for poor regions). To address this international problem, researchers at UC Berkeley have developed an improved method for detecting As in groundwater as low as 1.8 parts per billion. This new sensor method is based on surface-enhanced Raman spectroscopy (SERS), in which analyte molecules near nanostructured metallic surfaces exhibit huge enhancements in Raman scattering. The Berkeley approach is a refinement of this SERS technology. Whereas previous attempts to use SERS to detect As have reported low sensitivities and poor signal-to-noise rations, this novel SERS-based approach achieved toxin detection levels of parts per billion. In addition to being highly sensitive, this innovative approach is portable, disposable, easily prepared and readily can be used for in-field applications. The sensor also has the unique ability to distinguish between the As(V) and As(III) ionic species.

  • Go to Page: