Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Agriculture & Animal Science > Transgenics

Categories

[Search within category]

(SD2022-045) RUBY Plasmids: A reporter for noninvasively monitoring gene expression and plant transformation

Reporters have been widely used to visualize gene expression, protein localization, and other cellular activities, but the commonly used reporters require special equipment, expensive chemicals, or invasive treatments.

Gene Editing for Improved Plant Characteristics via Modulation of Suberin Regulators

Researchers at the University of California, Davis have identified specific genetic modifications to plants that impart a variety of advantages based on modulating the presence of suberin

Increased Microorganism Alcohol Tolerance Via Transformation of its pntAB Locus

Researchers at the University of California, Davis have developed microorganisms with increased alcohol tolerance by modifying the organisms’ pntAB locus through expression of one or both of its pntA/pntB genes.

Engineered/Variant Hyperactive CRISPR CasPhi Enzymes And Methods Of Use Thereof

The CRISPR-Cas system is now understood to confer bacteria and archaea with acquired immunity against phage and viruses. CRISPR-Cas systems consist of Cas proteins, which are involved in acquisition, targeting and cleavage of foreign DNA or RNA, and a CRISPR array, which includes direct repeats flanking short spacer sequences that guide Cas proteins to their targets.  Class 2 CRISPR-Cas are streamlined versions in which a single Cas protein bound to RNA is responsible for binding to and cleavage of a targeted sequence. The programmable nature of these minimal systems has facilitated their use as a versatile technology that is revolutionizing the field of genome manipulation.  There is a need in the art for additional Class 2 CRISPR/Cas systems (e.g., Cas protein plus guide RNA combinations).     UC Berkeley researchers discovered a new type of CasPhi/12j protein.  Site-specific binding and/or cleavage of a target nucleic acid (e.g., genomic DNA, ds DNA, RNA, etc.) can occur at locations (e.g., target sequence of a target locus) determined by base-pairing complementarity between the Cas12 guide RNA (the guide sequence of the Cas12 guide RNA) and the target nucleic acid.  Similar to CRISPR Cas9, the compact Cas12 enzymes are expected to have a wide variety of applications in genome editing and nucleic acid manipulation.  

Improved guide RNA and Protein Design for CasX-based Gene Editing Platform

The inventors have developed two new CasX gene-editing platforms (DpbCasXv2 and PlmCasXv2) through rationale structural engineering of the CasX protein and gRNA, which yield improved in vitro and in vivo behaviors. These platforms dramatically increase DNA cleavage activity and can be used as the basis for further improving CasX tools.The RNA-guided CRISPR-associated (Cas) protein CasX has been reported as a fundamentally distinct, RNA-guided platform compared to Cas9 and Cpf1. Structural studies revealed structural differences within the nucleotide-binding loops of CasX, with a compact protein size less than 1,000 amino acids, and guide RNA (gRNA) scaffold stem. These structural differences affect the active ternary complex assembly, leading to different in vivo and in vitro behaviors of these two enzymes.

A Plant Immune Receptor For Enhanced Resistance To Herbivory

No transgenic technologies yet exist to enhance plant immune recognition of insect herbivores. Technologies to combat herbivores via transgenes rely on expression of bacterial cryotoxins but frequently break down due to evolved resistance in pests.

TRM:Sox9CreER BAC Transgenic Mice

These transgenic mice express an inducible version of cre recombinase mice under the direction of a Sox9 promoter. They are suitable for performing cre-recombination in pancreatic ductal cells and their progenitors.

CRISPR-CAS EFFECTOR POLYPEPTIDES AND METHODS OF USE THEREOF

The CRISPR-Cas system is now understood to confer bacteria and archaea with acquired immunity against phage and viruses. CRISPR-Cas systems consist of Cas proteins, which are involved in acquisition, targeting and cleavage of foreign DNA or RNA, and a CRISPR array, which includes direct repeats flanking short spacer sequences that guide Cas proteins to their targets.  Class 2 CRISPR-Cas are streamlined versions in which a single Cas protein bound to RNA is responsible for binding to and cleavage of a targeted sequence. The programmable nature of these minimal systems has facilitated their use as a versatile technology that is revolutionizing the field of genome manipulation.  Current CRISPR Cas technologies are based on systems from cultured bacteria, leaving untapped the vast majority of organisms that have not been isolated.  There is a need in the art for additional Class 2 CRISPR/Cas systems (e.g., Cas protein plus guide RNA combinations).     UC Berkeley researchers discovered a new type of Cas 12 protein.  Site-specific binding and/or cleavage of a target nucleic acid (e.g., genomic DNA, ds DNA, RNA, etc.) can occur at locations (e.g., target sequence of a target locus) determined by base-pairing complementarity between the Cas12 guide RNA (the guide sequence of the Cas12 guide RNA) and the target nucleic acid.  Similar to CRISPR Cas9, Cas12 enzymes are expected to have a wide variety of applications in genome editing and nucleic acid manipulation.    

Engineering Polyketide Synthase Machinery in Cyanobacteria

Complex polyketides include a family of natural products that possess a wide variety of pharmacological or biological activities. Numerous polyketides and their semisynthetic derivatives have been approved for clinical use in humans or animals, including antibiotics, antifungal agents, immunosuppressants, antiparasitic agents and insecticides. All these natural products share a common mechanism of biosynthesis and are produced by a class of enzymes called polyketide synthases (PKSs). Besides their essential role in the biosynthesis of a vast diversity of natural products, the versatility of PKSs can be further emphasized as they can be redesigned and repurposed to produce novel molecules that could be used as fuels, industrial chemicals, and monomers. Most polyketide producers are slow-growing, recalcitrant to genetic manipulation, or even non-culturable.

Lentivirus-like Particle Delivery of CRISPR-Cas9 & Guide RNA for Gene Editing

CRISPR-Cas9 is revolutionizing the field of gene editing and genome engineering. Efficient methods for delivering CRISPR-Cas9 genome editing components into target cells must be developed, both for ex vivo and in vivo applications. Current delivery strategies have drawbacks: genetically encoding Cas9 into viruses (ex. adeno-associated virus, adenovirus, retrovirus) leads to prolonged Cas9 expression in target cells, thus increasing the likelihood for off-target gene editing events. This problem can be mitigated by complexing ribonucleoprotein (RNP) Cas9 and guide RNA (gRNA) in vitro prior to administration – however, additional strategies for trafficking RNPs into target cells must additionally be employed.    To address this challenge, UC Berkeley researchers have discovered lentivirus-like particles that deliver Cas9/gRNA RNP complexes into target cells with high efficiency. This delivery strategy combines the ability of viruses to deliver cargo intracellularly with the transient nature of Cas9 RNP complexes. 

An Efficient Gene Editing Approach to Create Transgene-free Mutant Plants

Effective isolation of targeted mutations generated by CRISPR/Cas9 requires not only reasonable editing efficiency, but also an easy method to screen for the mutations. Editing events generated by CRISPR/Cas9 are normally identified by restriction enzyme digestion of PCR fragments or by in vitro digestion using purified Cas9 protein. Both methods are time-consuming and laborious. Simplified screening methods are urgently needed.

Rapid Screening and Identification of Antigenic Components in Tissues and Organs

Researchers at the University of California, Davis have developed an approach to rapidly screen and identify antigenic components in tissues and organs.

Gene Delivery Into Mature Plants Using Carbon Nanotubes

96 Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} Current methods of biomolecule delivery to mature plants are limited due to the presence of plant cell wall, and are additionally hampered by low transfection efficiency, high toxicity of the transfection material, and host range limitation. For this reason, transfection is often limited to protoplast cultures where the cell wall is removed, and not to the mature whole plant.  Unfortunately, protoplasts are not able to regenerate into fertile plants, causing these methods to have low practical applicability. Researchers at the University of California have developed a method for delivery of genetic materials into mature plant cells within a fully-developed mature plant leaf, that is species-independent. This method utilizes a nano-sized delivery vehicle for targeted and passive transport of biomolecules into mature plants of any plant species. The delivery method is inexpensive, easy, and robust, and can transfer biomolecules into all phenotypes of any plant species with high efficiency and low toxicity.

Label Free Assessment Of Embryo Vitality

Researchers at UC Irvine developed an independent non-invasive method to distinguish between healthy and unhealthy embryos.

Xylosyl-Xylitol Oligomers And Their Microbial And Enzymatic Productions

Lignocellulosic biomass derived from plant cell walls is the most abundant raw material for biofuels and renewable chemicals production.  Hemicellulose comprises about 30% of the total weight of lignocellulosic biomass. In contrast to cellulose, hemicellulose components are readily depolymerized into short oligomers and released into the liquid phase during pretreatment.  It is of great interest to convert the released hemicellulose components into fuels or other value-add chemicals for building an economical biomass conversion process. There are ten times more microorganisms than human cells in a healthy adult.  The symbiosis between the microbiome and human organs is increasingly recognized as a major player in health and well-being.  Xylooligosaccharides and xylitol, both derived from hemicellulose, can benefit gut flora and oral flora, respectively. Xylooligosaccharides (XOS, also called xylodextrins) are naturally occurring oligosaccharides, found in bamboo shoots, fruits, vegetables, milk and honey.  Industrial scale production of XOS can be carried out with much less expensive lignocellulosic materials by hydrothermal treatment or enzymatic hydrolysis.  A broad range of applications of XOS have been demonstrated, including as functional food, prevention and treatment of gastrointestinal infections, animal feed for fish and poultry, agricultural yield enhancer and ripening agent, and as active agents against osteoporosis, pruritus cutaneous, otitis, and skin and hair disorders.  In the current market, the most important applications of XOS correspond to ingredients for functional foods as a prebiotic, or formulated as synbiotics. XOS has been shown to promote beneficial bacteria Bifidobacterium adolescentis growth in vitro and in vivo.  It has been estimated that the prebiotics market will reach $4.8 billion by 2018. Xylitol is another hemicellulose-derived compound beneficial to human health.  For many bacteria and yeasts, the uptake of non-utilizable xylitol interferes with hexose utilization, which helps the human body to rebuild a healthy microbiome.  Xylitol has been used to prevent middle ear infections and tooth decay.  In addition, xylitol possesses 33% fewer calories but similar sweetness compared to sucrose and has been widely used as a substitute sweetener.  While chemical hydrogenation of xylose remains the major industrial method of xylitol production, microbial fermentation has become more popular in the newly built plants due to lower conversion cost. There exists a need for improved methods of producing xylooligosaccharides and related compounds, such as xylooligosaccharides with xylitol components.    UC researchers discovered a new set of fungal metabolic intermediates, named xylosyl-xylitol oligomers and developed the enzymatic and microbial fermentation method to produce such compounds. The detection and purification methods have also been developed.

Enhanced Cell/Bead Encapsulation Via Acoustic Focusing

The invention consists of a multi-channel, droplet-generating microfluidic device with a strategically placed feature.The feature vibrates in order to counteract particle-trapping micro-vortices formed within the device.Counteracting these vortices allows for single particle encapsulation in the droplets formed by the device and thereby makes this technology a good candidate for use in single cell diagnostics and drug delivery systems.

Methods For High Signal-To-Noise Imaging Of Chromosomal Loci In Cells Using Fluorescent Cas9

Cas9 is an endonuclease that binds complementary target DNA and generates site-specific breaks using two conserved nuclease domains. By inactivating both nuclease domains, dCas9 is produced, which functions as a programmable DNA binding protein. Current methods use dCas9-GFP fusions to image chromosomal loci, but have insufficient signal-to-noise ratio and often misidentify loci. UC Berkeley researchers have engineered a Cas9 variant that can be labeled with small molecule fluorescent dyes. This variant utilizes a conformational change in Cas9 to provide highly specific identification of chromosomal loci, and has been shown to work in a proof-of-principle experiment using Förster resonance energy transfer (FRET) pairs.

Novel and Effective Method of Developing Recombinant Proteins

Researchers at the University of California, Davis have developed a novel method to produce and recover high limits of recombinant protein from leaf tissue.

Novel Peptide Capable of Stimulating Disease Resistance in Plants

Pamela Ronald and researchers at the Joint BioEnergy Institute (JBEI) have discovered raxX, a novel peptide that activates the Xa21 immune response pathway, capable of conferring robust disease resistance, and methods for its use. Application of the peptide activates the plant immune responses and eliminating bacterial infection. Engineering plants to express both raxX and Xa21 under an inducible control is expected to lead to robust resistance in diverse plant species.

Reversible Chemoenzymatic Protein Labeling

Some of nature’s most complex molecules are made by cellular factories that rely on an acyl carrier protein (ACP) to shuttle growing molecules along biological assembly lines. Post-translational protein modification is important for adding functions to proteins that can be exploited for therapeutics, protein engineering, affinity design and enzyme immobilization, among other applications. Commercial techniques for attaching labels to acyl carrier protein (ACP) and other carrier proteins are currently in use.

A Humanized Mouse Model of Severe Asthma

UCLA researchers have developed two transgenic mouse models that mimic the allergic response to be used for studying asthma and other allergic and inflammatory diseases.

NH3 Polypeptide Driven Disease Resistance in Plants

Researchers at the University of California, Davis have developed a method to enhance disease resistance in plants.

  • Go to Page: