Browse Category: Sensors & Instrumentation > Medical

[Search within category]

Systems, Methods, and Media for Determining Fetal Photoplethysmography Information from Non-Invasively Obtained Mixed Photoplethysmography Signals

Researchers at the University of California, Davis have developed a system and method for accurately extracting fetal photoplethysmography information from mixed maternal-fetal signals obtained non-invasively through the maternal abdomen.

Flexor Tendon Imaging Apparatus

Researchers at the University of California, Davis have developed a portable apparatus that standardizes digit positioning and applies counter-resistance for improved imaging of the flexor tendon system in the hand.

A Novel High-Resolution EEG Signal Acquisition System With A Unique EEG Cap Array

A breakthrough one-wire EEG cap with embedded electrode chips provides ultra-sensitive, noise-immune, wide-band brain signal acquisition. It enables non-invasive, real-time, high-resolution recording using dry electrodes, ideal for wearable and clinical neuro-technology applications.

Non-Invasive Tool That Assesses Bruise Injuries Across All Skin Types.

An innovative non-invasive device that accurately determines the age of bruises for all skin types and tones, designed to assist in forensic investigations and medical diagnostics.

Nanoplatform for Cancer Therapy

Researchers at the University of California, Davis have developed a nanoparticle system combining photothermal therapy and chemotherapy for enhanced cancer treatment.

Dual-Grid Multi-Source X-ray Tube

Researchers at the University of California, Davis have developed an advanced multi x-ray source array system employing dual cathode designs that enhance computed tomography (“CT”) imaging by enabling pulsed, spatially multiplexed x-ray emission with reduced artifacts.

Hydrogelated Cells for Regenerative Medicine Applications

Researchers at the University of California, Davis have developed a technology that introduces an approach to creating semi-living, non-replicating cellular systems for advanced therapeutic applications.

System And Method Of EAT/US-Guided Pulsed Field Ablation For Intracardiac Applications

A real-time, ultrasound-based imaging modality that improves intracardiac irreversible electroporation accuracy by visualizing electric field distribution during cardiac ablation.

Position-Sensitive Radiation Detector

Position-sensitive radiation detection has been used in semiconductor detector development for decades. Traditional approaches have relied on segmented electrodes to achieve spatial resolution. Conventional semiconductor radiation detectors utilize segmented electrodes where each electrode segment is physically separated and individually read out to determine the position of radiation interactions. Traditional segmented electrode designs have long suffered from highly non-uniform electric fields within the detector volume, particularly at electrode edges and corners. These field concentrations can cause premature breakdown and inconsistent charge collection. This non-uniformity can also lead to position-dependent signal variations, pulse time dispersion, and potential electrical connections between adjacent electrodes from radiation damage. Moreover, common approaches to manufacturing of segmented electrodes requires precise mask alignment and complex fabrication processes, resulting in higher production costs and reduced yields.

Inferring Dynamic Hidden Graph Structure in Heterogeneous Correlated Time Series

Current methods for treating nervous system disorders often rely on generalized approaches that may not optimally address the individual patient's specific pathology, leading to suboptimal outcomes. This innovation, developed by UC Berkeley researchers, provides a method to identify the most critical, or "influential," nodes within a patient's functional connectivity network derived from time-series data of an organ or organ system. The method involves obtaining multiple time-series datasets from an affected organ/system, using them to map the functional connectivity network, and then determining the most influential nodes within that network. By providing this specific and personalized information to a healthcare provider, a treatment can be prescribed that precisely targets the respective organ corresponding to these influential nodes. This personalized, data-driven approach offers a significant advantage over conventional treatments by focusing intervention on the most impactful biological targets, potentially leading to more effective and efficient patient care.

Activation of Neural Tissue by FUS in the Presence of a Magnetic Field Gradient

The primary challenge in non-invasive brain stimulation, such as Transcranial Focused Ultrasound Stimulation (TFUS), is providing precise, localized, and mechanistically distinct control over neural activity. Standard TFUS is believed to function primarily through mechanical deformation of tissue, limiting the ability to selectively enhance or separate different types of neural modulation. Addressing this, UC Berkeley researchers have developed a novel system for the Activation of Neural Tissue by FUS in the Presence of a Magnetic Field Gradient. This unique mechanism, which generates electromagnetic induction from acoustic motion, provides a new physical mechanism to activate or modulate nervous tissue entirely separate from the mechanical effects of the ultrasound alone, offering a higher degree of experimental control and therapeutic precision compared to conventional FUS.

Intelligent Wound Healing Diagnostics and Treatments

Chronic wounds affect over 6.5 million people in the United States costing more than $25B annually. 23% of military blast and burn wounds do not close, affecting a military patient's bone, skin, nerves. Moreover, 64% of military trauma have abnormal bone growth into soft tissue. Slow healing of recalcitrant wounds is a known and persistent problem, with incomplete healing, scarring, and abnormal tissue regeneration. Precise control of wound healing depends on physician's evaluation, experience. Physicians generally provide conditions and time for body to either heal itself, or to accept and heal around direct transplantations, and their practice relies a lot on passive recovery. And while newer static approaches have demonstrated enhanced growth of non-regenerative tissue, they do not adapt to the changing state of wound, thus resulting in limited efficacy.

Highly Stretchable And Conductive Inks For Printed Circuits

A method to manufacture stretchable circuit boards using silver ink for wearable applications.

A Multimodal Distributed Sensing Device

Researchers at the University of California, Davis have developed tactile feedback systems that enhance spatial and sensory resolution in sensor arrays through unique signal modulation techniques.

Electro-Plasmonic System and Methods

Scaled neural sensing has been pursued for decades. Physical limitations associated with electrical (electrode-based) field recordings hinder advances in both field of view and spatial resolution. Electrochromic plasmonics (electro-plasmonics) has emerged as a rapidly advancing field combining traditional electrochromic materials with plasmonic nanostructures, including recent demonstrations of electrochromic-loaded plasmonic nanoantennas for optical voltage sensing. Existing optical electrophysiology techniques face critical limitations including poor signal-to-noise ratios due to low photon counts from genetically encoded voltage indicators, which have small cross-sections and low quantum yields. Fluorescent voltage indicators suffer from photobleaching, phototoxicity, and require genetic modifications that limit their clinical applicability. Current electrochromic devices also struggle with limited cycling stability, slow switching times, and restricted color options, and conventional plasmonic sensors exhibit inherently low electric field sensitivity due to high electron densities of metals like gold and silver. Current approaches to electro-plasmonics lack stable, high-contrast optical modulators that can operate at sub-millisecond speeds while maintaining human biocompatibility.

An Implantable Electrocorticogram (Ecog)-Brain-Computer Interface System For Restoring Lower Extremity Movement And Sensation

A fully implantable brain-computer interface (BCI) system that enables direct brain control of lower extremity prostheses to restore walking after neural injury.

A Context-Aware Selective Sensor Fusion Method For Multi-Sensory Computing Systems

HydraFusion is a modular, selective sensor fusion framework designed to enhance performance and efficiency in multi-sensory computing systems across diverse contexts.

Patient Pressure Injury Prevention Methods and Software

Pressure injuries (commonly called bedsores or pressure ulcers) represent one of the most persistent and costly challenges in healthcare, affecting over 2.5 million US patients and costing almost $27B in 2019. Hospital-acquired pressure injury events occur in about 3% in general populations and about 6% in intensive care units (ICUs). Current prevention strategies still rely on the Braden Scale risk assessment tool as the gold standard. Developed in the 80s, it is used to stratify patients into risk categories based on factors like sensory perception, moisture, mobility, and friction. The Braden score directly informs turning frequency as the standard of protocol. Unfortunately, medical staff adherence to turning protocols remains low at ~50% nationally, creating a gap between prescribed care and actual implementation. Technologies to help assess by sensing pressure injuries have limitations, including discontinuous monitoring requiring manual interpretation, and lack of objective mobility metrics. These fail to account for the complex interplay between pressure distribution, patient movement patterns, and individual risk factors. The Braden-scoring approach is particularly problematic as it does not account for the presence of existing pressure injuries or patient-specific factors, and has been shown to have inadequate validity for ICU patients. Additionally, current pressure mapping systems are typically large, expensive, and require specialized training, limiting their practical deployment in routine clinical care.

Patient-Ventilator Asynchrony Monitor

Researchers at the University of California, Davis have developed technology that provides an advanced system for monitoring and supporting patient resuscitation and mechanical ventilation, enhancing clinical decision-making.

Hydrogel-Based Environmental Sensor Device

A novel sensor device leveraging hydrogel and metallic structures for passive, wireless environmental monitoring.

3D Cardiac Strain Analysis

An advanced geometric method for comprehensive 3D cardiac strain analysis, enhancing diagnosis and monitoring of myocardial diseases.

Centrifugal Microfluidics for Rapid Bacterial Growth and Antibiotic Susceptibility Testing

A novel device leveraging centrifugal microfluidics to accelerate bacterial growth and rapidly determine antibiotic susceptibility.

Oscillating Sensing Circuit

This technology enhances the sensitivity of sensors through exceptional points of degeneracy in various circuit configurations.

Electric Circuits Of Enhanced Sensitivity Based On Exceptional Points Of Degeneracy

A novel circuit design promoting enhanced sensitivity for electromagnetic sensing through exceptional points of degeneracy.

Method Of Microbubble Resonator Fabrication

An innovative technique for creating high-sensitivity Whispering Gallery Mode (WGM) sensors through advanced microbubble resonator fabrication.

  • Go to Page: