Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Sensors & Instrumentation > Medical


[Search within category]

Particle-Sorting Device for Isolation, and Enrichment of Particles at Ultra-Low Concentrations

The ability to detect and sort particles by type is important to many fields, such as medical diagnostics, environmental monitoring, and food safety.UCI researchers have developed a platform to sort and isolate particles from a turbid medium with minimal pre-processing. The platform is very desirable for applications in which enrichment of particles or biological substances at low concentrations is necessary.

Mapping Ciliary Activity Using Phase Resolved Spectrally Encoded Interferometric Microscopy

Researchers at UCI have developed an imaging technique that can monitor and measure small mobile structures called cilia in our airways and in the oviduct. This invention will serve as a stepping stone for study of respiratory diseases, oviduct ciliary colonoscopy and future clinical translations.

Non-invasive Head and Neck Cancer Screening Probe based on Optical Coherence Tomography

Researchers at the Beckman Laser Institute have developed a non-invasive fiber optic probe capable of imaging and detecting cancerous tissue within the head and neck regions. The probe also helps to guide surgeons in effectively performing tumor removal.

A Wearable Freestanding Electrochemical Sensing System

Researchers in the UCLA Department of Electrical and Computer Engineering have developed a strategy for high-fidelity, wearable biomarker data acquisition and sensor integration with consumer electronics.

A Fully Integrated Stretchable Sensor Arrays for Wearable Sign Language Translation To Voice

UCLA researchers in the Department of Bioengineering have developed a novel machine learning assisted wearable sensor system for the direct translation of sign language into voice with high performance.

A Battery-Less Wirelessly Powered Frequency-Swept Spectroscopy Sensor

UCLA researchers in the Department of Electrical and Computer Engineering have developed a wirelessly powered frequency-swept spectroscopy sensor.

Fluorescence Lifetime Imaging Microscopy Device for Antibiotic Susceptibility Testing (FLIM-AST)

Antibiotic resistant bacterial infection is a global public health threat leading to prolonged hospital stays, higher medical costs, and increased mortality rates. UCI researchers developed a device to rapidly determine antibiotic susceptibility of bacteria from patient samples to determine more effective antibiotic treatments.

A Wireless Textile Based Sensor System for Self-Powered Personalized Health Care

UCLA researchers in the Department of Bioengineering have developed a textile-based sensor system (TS system) for wireless, wearable biomonitoring.

Unobtrusive Fetal Heartrate Monitoring In The Daily Life

A novel wearable, unobtrusive flexible patch designed to facilitate continuous monitoring of fetal heart rate (fHR) and ECG by pregnant women in a home setting.

Wireless and Programmable Recording and Stimulation of Deep Brain Activity in Freely Moving Humans Immersed in Virtual, Augmented or Real-World Environments

UCLA researchers in the Department of Psychiatry and Biobehavioral Sciences have a designed a lightweight, highly mobile deep brain activity measuring platform that elucidates neural mechanisms for neuropsychiatric disorders.

Autonomous Comfort Systems Via An Infrared-Fused Vision-Driven Robotic Systems

Robotic comfort systems have been developed which use fans to deliver heated/cooling air to building occupants to provide greater levels of personal comfort.  However, current robotic systems rely on surveys asking individuals about their comfort state through a web interface or app.  This reliance on user feedback becomes impractical due to survey fatigue on the part of the user.  Researchers at the University of California, Berkeley have developed a system which uses a visible light camera located on the nozzle of a robotic fan to detect human facial features (e.g., eyes, nose, and lips).  Images from a co-located thermal camera are then registered onto the visible light image and temperatures of different facial features are captured and used to infer the comfort state of the individual.  Accordingly, the fan/heater system blows air with a specific velocity and temperature toward the occupant via a closed-loop feedback control.  Since the system can track a person in an environment, it addresses issues with prior data collection systems that needed occupants to be positioned in a specific location.

Development of a Thermal Endoscope for ENT Clinical Diagnostics

There is a clinical need for improved visual inspection for ENT diagnosis and surgeries. Endoscopy is required to access locations of ENT conditions. However, the assessment and identification of ENT abnormalities and pathologies remain challenging due to the difficult-to- reach ENT locations and the complex nature of the related pathologies. An imaging technique that could provide additional information, high contrast, and quantitative data about the patient condition will be useful, especially to assist ENT clinicians in diagnosis and surgeries and to avoid the need to resort to more expensive imaging techniques (e.g., CT scans, ultrasound imaging,MRI).

Microfluidic Dispenser for Automated, High-Precision, Liquids Handling

Researchers at the University of California, Davis have developed a robotic dispensing interface that uses a microfluidic-embedded container cap – often referred to as a microfluidic Cap-to-Dispense or μCD - to seamlessly integrate robotic operations into precision liquids handling.

Development of a Detachable Endoscope

Endoscopes are used in many fields of medicine to investigate, diagnose, and treat patients. One common procedure that utilizes an endoscope (known as a bronchoscope), is the procedure of intubation that is conducted over 16 million times in the United States annually. To intubate a patient successfully, a physician needs to insert an endotracheal tube (ETT) into the patient’s mouth and secure it in the airway. A delay in securing the ETT into position of greater than 4 minutes can result in permanent brain injury or death of the patient. Malfunction of an indwelling ETT itself or changes in the airway anatomy may lead to emergent need for ETT exchange. The bronchoscope is the gold standard device for confirming the proper placement of an ETT in the trachea and the ultimate method for regaining control. A detachable endoscope design offers additional key advantages potentially allowing the insertion tube portion to be an economical, disposable, single patient use device, eliminating the concern over superbug cross contamination and reducing cost of processing and maintenance.

Training Platform for Transoral Robotic Surgery

UCLA researchers in the Departments of Bioengineering and Head & Neck Surgery have developed a novel robotic platform for the training of transoral surgery.

Smart Dialysis Catheter

UCLA researchers in the Department of Cardiology at UCLA’s David Geffen School of Medicine have developed a smart dialysis catheter that can measure different patient vitals in real-time to prevent hospitalizations due to renal failure.

Mechanisms and Devices Enabling Arbitrarily Shaped, Deep-Subwavelength, Acoustic Patterning

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a Compliant Membrane Acoustic Patterning (CAMP) technology capable of patterning cells in an arbitrary pattern at a high resolution over a large area.

Computational Cytometer Based On Magnetically-Modulated Coherent Imaging And Deep Learning

UCLA researchers in the Department of Electrical & Computer Engineering have designed and built a computational cytometer capable of detecting rare cells at low concentration in whole blood samples. This technique and instrumentation can be used for cancer metastasis detection, immune response characterization and many other biomedical applications.

Manumeter for Monitoring and Assessing Upper Extremity Rehabilitation

After an injury or neurological event, a patient’s rehabilitation requires long-term assessment and monitoring, especially in the upper extremities that are important for everyday tasks.UCI researchers have developed the Manumeter to quantitatively assess and log a patient’s hand movements without external therapist intervention.

A Wearable Platform for In-Situ Analysis of Hormones

UCLA researchers in the Department of Electrical and Computer Engineering have developed a highly sensitive, wearable hormone monitoring platform.

Ultra-Low Cost, Transferrable and Thermally Stable Sensor Array Patterned on Conductive Substrate for Biofluid Analysis

UCLA researchers from the Department of Electrical Engineering have invented a novel biosensor array that is ultra-low cost and thermally stable. It prolongs the lifetime of electrode modules of sensor products and allows for extended sensing operation in uncontrolled environments.

In-Situ Sweat Rate Monitoring For Normalization Of Sweat Analyte Concentrations

UCLA researchers in the Department of Electrical Engineering have developed a method of in-situ sweat rate monitoring, which can be integrated into wearable consumer electronics for physiological analyses.

Multiplexed Sweat Extraction And Sensing Wearable Interface For Normalized And Periodic Analysis

UCLA researchers from the Department of Electrical Engineering have developed a novel sweat induction and sensing platform to achieve personalized physiological monitoring non-invasively.

Crosslinkable Polymer Coating Prevents Bacterial Infection on Implant Surface

UCLA researchers in the Department of Orthopedic Surgery have developed a polymer implant coating that mitigates bacterial infections on the implant surface.

  • Go to Page: