Please login to create your UC TechAlerts.
Request a new password for
Required
REVEALR Technology for Viral Detection
A novel diagnostic technology offering rapid, accurate, and inexpensive detection, genotyping, and quantification of viral RNA in patient-derived samples, enhancing public health capabilities.
Machine Vision-Based System and Methods for Wound Diagnostics and Therapies
Precise control of wound healing depends on physician’s evaluation, experience. Physicians provide conditions and time for body to either heal itself, or to accept and heal around direct transplantations, and their practice relies a lot on passive recovery. Slow healing of recalcitrant wounds is a known persistent problem, with incomplete healing, scarring, and abnormal tissue regeneration. 23% of military blast and burn wounds do not close, affecting a patient’s bone, skin, nerves. 64% of military trauma have abnormal bone growth into soft tissue. While newer static approaches have demonstrated enhanced growth of non-regenerative tissue, they do not adapt to the changing state of wound, thus resulting in limited efficacy.
Advanced Photodetector System and Methods
X-radiation (X-ray) imaging is one of the most common imaging techniques in medicine. Presently, thin-film transistor flat panel detectors are the gold standard for X-ray detection; however, these detectors average across the absorbed X-ray spectrum and thus suffer from poor material decomposition and lesion differentiation. Modern efforts to address this focus on three methods of energy differentiation: dual-shot, photon counting, and dual-layer detectors. Dual-shot detection utilizes a single detector to image a patient with two shots of X-rays at low and high energies. While this has been shown to effectively differentiate between soft and hard tissues, (e.g., chest radiography) this results in a higher dose level to the patient and motion artifacts from slight movement between images. Photon counting detectors offer an alternative to multiple shots, providing high spatial resolution, low dose, and multiple energy binning with photon weighting. However, these detectors also require more complex circuit design for fast readout, have limited material options with great enough yield and detective quantum efficiency at low to mid energy ranges, and are limited in detective area. Dual-layer detectors that stack two detector layers to each process low and high energy X-rays remove motion artifacts by utilizing a single shot of polyenergetic X-rays. These most commonly employ two indirect detectors separated by a Cu filtering layer, which photon-starves the second higher energy detector. Unfortunately, this also requires a higher X-ray intensity, resulting in a higher dose level to the patient.
Non-Pharmacological, Neurostimulation Treatment for Hypertension
A groundbreaking non-pharmacological approach to controlling resistant hypertension through personalized, closed-loop neurostimulation.
Auto Single Respiratory Gate by Deep Data Driven Gating for PET
In PET imaging, patient motion, such as respiratory and cardiac motion, are a major source of blurring and motion artifacts. Researchers at the University of California, Davis have developed a technology designed to enhance PET imaging resolution without the need for external devices by effectively mitigating these artifacts
Method and System for Signal Separation in Wearable Sensors with Limited Data (with Applications to Transabdominal Fetal Oximetry)
Researchers at the University of California, Davis have developed method for separating quasi-periodic mixed-signals using a single data trace, enhancing wearable sensor applications.
Air-Based Force Sensor for Surgical Applications
An innovative air-based force sensor designed to enhance the safety and precision of surgical instrument insertions.
Time Varying Electric Circuits Of Enhanced Sensitivity Based On Exceptional Points Of Degeneracy
Sensors are used in a multitude of applications from molecular biology, chemicals detection to wireless communications. Researchers at the University of California Irvine have invented a new type of electronic circuit that utilizes exceptional points of degeneracy to improve the sensitivity of signal detection.
Electrochemical Point-Of-Care Cerebrospinal Fluid Detection
A revolutionary device for the diagnosis of cerebrospinal fluid (CSF) leaks with rapid, accurate, and low-volume sampling at the point of care.
Device And Method For The Preparation And Operation On Biological Specimen
This device offers a non-invasive solution for treating nasal airway obstructions, significantly improving recovery time and patient outcomes.
Natural Lens Curvature Measurements As A Variable In Calculating Intraocular Lens Power
A novel method for predicting the effective lens position (ELP) in cataract surgery through pre-operative measurements of natural lens curvatures.
Wearable Bioelectronics for Programmable Delivery of Therapy
Bioelectronic Smart Bandage For Controlling Wound pH through Proton Delivery
Methods for Positronium Lifetime Image Reconstruction
Researchers at the University of California, Davis have developed a technology involving statistically reconstructing positronium (or positron) lifetime imaging (PLI) for use with a positron emission tomography (PET) scanner, to produce images having resolutions better than can be obtained with existing time-of-flight (TOF) systems.
Broadband Light Emission with Hyperbolic Material
Researchers at the University of California, Davis have developed a solid-state device that uses Cherenkov Radiation to emit light at a tunable wavelength in the THz to IR range.
Headset with Incorporated Optical Coherence Tomography (OCT) and Fundus Imaging Capabilities
Researchers at the University of California, Davis, have developed a headset (e.g., virtual reality headset) in which two imaging modalities, optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO), are incorporated with automated eye tracking and optical adjustment capabilities providing a fully automated imaging system in which patients are unaware that images of the retina are being acquired. Imaging takes place while the patient watches a soothing or entertaining video.
High Resolution, Ultrafast, Radiation-Background Free PET
Researchers at the University of California, Davis, have developed a positron emission tomography (PET) medical imaging system that allows for higher 3D position resolution, eliminates radiation background, and holds a similar production cost to existing technologies.
Haptic Smart Phone-Cover: A Real-Time Navigation System for Individuals with Visual Impairment
Researchers at the University of California, Davis have developed a haptic interface designed to aid visually impaired individuals in navigating their environment using their portable electronic devices.
Hyperspectral Compressive Imaging
Researchers at the University of California, Davis have developed two designs capable of capturing hyperspectral images that can be processed using compressive sensing techniques. These advanced component technologies for hyper-spectral imagers realizing 100x reduced size, weight, and power while supporting 1000x framerates in support of high performance.
Intraocular Pressure Microsensor Utilizing Radio Frequency Interrogation
A miniature, implantable sensor for measuring intraocular pressure in the human eye by utilizing radio frequency interrogation.
Silent Speech Interface Using Manifold Decoding Of Biosignals
Researchers at the University of California, Davis have developed a technology that provides a novel method for decoding biosignals into speech, enhancing communication for individuals with speech impairments.
Heated Dynamic Headspace Sampling Device for Volatile Organic Compounds (VOCs) from a Surface
Researchers at the University of California, Davis have developed a technology that offers a sophisticated solution for collecting and measuring gas emissions from surfaces, particularly skin, with high sensitivity and specificity.
Compact Series Elastic Actuator Integration
While robots have proven effective in enhancing the precision and time efficiency of MRI-guided interventions across various medical applications, safety remains a formidable challenge for robots operating within MRI environments. As the robots assume full control of medical procedures, the reliability of their operation becomes paramount. Precise control over robot forces is particularly crucial to ensure safe interaction within the MRI environment. Furthermore, the confined space in the MRI bore complicates the safe operation of human-robot interaction, presenting challenges to maneuverability. However, there exists a notable scarcity of force-controlled robot actuators specifically tailored for MRI applications. To overcome these challenges, UC Berkeley researchers have developed a novel MRI-compatible rotary series elastic actuator module utilizing velocity-sourced ultrasonic motors for force-controlled robots operating within MRI scanners. Unlike previous MRI-compatible SEA designs, the module incorporates a transmission force sensing series elastic actuator structure, while remaining compact in size. The actuator is cylindrical in shape with a length shorter than its diameter and integrates seamlessly with a disk-shaped motor. A precision torque controller enhances the robustness of the invention’s torque control even in the presence of varying external impedance; the torque control performance has been experimentally validated in both 3 Tesla MRI and non-MRI environments, achieving a settling time of 0.1 seconds and a steady-state error within 2% of its maximum output torque. It exhibits consistent performance across low and high external impedance scenarios, compared to conventional controllers for velocity-sourced SEAs that struggle with steady-state performance under low external impedance conditions.
Digital Meter-On-Chip with Microfluidic Flowmetry
Researchers at the University of California, Davis have developed a microfluidic flowmetry technology that achieves on-chip measurement with ultrahigh precision across a wide tunable range.
High-Speed, High-Memory NMR Spectrometer and Hyperpolarizer
Recent advancements in nuclear magnetic resonance (NMR) spectroscopy have underscored the need for novel instrumentation, but current commercial instrumentation performs well primarily for pre-existing, mainstream applications. Modalities involving, in particular, integrated electron-nuclear spin control, dynamic nuclear polarization (DNP), and non-traditional NMR pulse sequences would benefit greatly from more flexible and capable hardware and software. Advances in these areas would allow many innovative NMR methodologies to reach the market in the coming years. To address this opportunity, UC Berkeley researchers have developed a novel high-speed, high-memory NMR spectrometer and hyperpolarizer. The device is compact, rack-mountable and cost-effective compared to existing spectrometers. Furthermore, the spectrometer features robust, high-speed NMR transmit and receive functions, synthesizing and receiving signals at the Larmor frequency and up to 2.7GHz. The spectrometer features on-board, phase-sensitive detection and windowed acquisition that can be carried out over extended periods and across millions of pulses. These and additional features are tailored for integrated electron-nuclear spin control and DNP. The invented spectrometer/hyperpolarizer opens up new avenues for NMR pulse control and DNP, including closed-loop feedback control, electron decoupling, 3D spin tracking, and potential applications in quantum sensing.