Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Sensors & Instrumentation > Medical

Categories

[Search within category]

Nano Biosensing System

Metabolites can provide real-time information about the state of a person’s health. Devices that can detect metabolites are commercially available, but are unable to detect very low concentrations of metabolites. Researchers at UCI have developed surfaces that use nanosensors to detect much lower concentrations of such metabolites.

Membrane Insertion of Potential Sensing Nanorods

UCLA researchers in the Department of Chemistry have developed inorganic semiconductor nanosensors that measure membrane voltage.

Wearable Real-Time Gait Analysis And Sensory Feedback System For Gait Rehabilitation And Biomechanical Optimization

UCLA researchers in the Department of Bioengineering have developed a wearable sensory feedback system that provides instructive tactile feedback to guide the user towards biomechanical gait improvements, based on real-time motion analysis derived from wearable sensor data.

A Simple Integrated Device For Assessing Lung Health

Chronic lung diseases, like asthma, impose critical challenges on both the patients and the physicians due to the complexity of the diseases. Not only are these diseases tough to accurately assess, many of the diseases can be impacted by other physical and sociological factors. Perhaps a greater difficulty lies in measuring the effectiveness and compliance of the medications including inhaled medications. The invention discovered at the University of California, Irvine, is an “all-in-one,” portable device that offers complete assessment of lung health. It also incorporates a novel technology for monitoring the effectiveness and compliance of a medication, thereby, providing a personalized treatment and care plan for adults and children with asthma.

Intraoperative Assessment Of Implant Positioning

Researchers from the Departments of Mechanical Engineering and Ophthalmology led by Dr. Jean-Pierre Hubschman have developed a modified intralocular lens (IOL) and surgical implantation procedure to treat cataract and refractive anomalies.

DNA Nanotechnology for Quick and Sensitive Detection of Nucleic Acids in Point-of-Care (POC) Diagnosis Applications

Researchers led by Dino Di Carlo from the Department of Bioengineering at UCLA have developed a quick, cheap, and accurate method to diagnose viral or bacterial infections.

Graphene Nanomesh As A Glucose Sensor

UCLA researchers in the Departments of Chemistry & Biochemistry and of Materials Science & Engineering have developed a glucose sensor based on a graphene nanomesh (GNM) material. The nanoscale GNM glucose sensor provides the potential for in vivo glucose sensing with high selectivity and high sensitivity.

Physical Multi-Layer Arm Phantom For Body Area Networks

Researchers at UCI have developed an oil-based in vitro phantom that accurately mimics the electrical properties of the human arm. Due to the increased accuracy it affords, this phantom can be used to test the efficiencies of wireless medical devices in body area networks.

A Delivery System for Percutaneous Delivery and Implantation Of Atrioventricular Heart Valves

The invention is a novel delivery system providing a minimally invasive solution for the delivery and implantation of atrioventricular heart valves. Through its novel mechanical structure, the invention delivers and positions the valve accurately with no need for painful surgeries or bulky tools.

An illuminated periodontal curette using wireless technologies for accurate perioscopy

The invention is an illuminated periodontal curette that offers an accurate and magnified visualization during complex dental procedures. The modified curette provides the operator with better real time insight and information regarding the tooth and root anatomy for accurate evaluation as well as procedure planning and therapy.

Highly Sensitive, Conformal And Wearable In2O3 Nanoribbon Transistor Biosensors With Integrated On Chip Side Gate For Glucose Monitoring In Body Fluid

UCLA researchers in the Department of Electrical Engineering have invented a novel wearable sensor that is capable of measuring glucose levels in bodily fluids.

Trainable Filter Emulator For Real-Time Control Systems

Researchers led by Dr. Cong from the Department of Computer Science at UCLA have developed an algorithm that enables real-time control in brain-machine interface applications.

Ultra-Dense Electrode-Based Brain Imaging System With High Spatial And Temporal Resolution

UCLA researchers in the Department of Bioengineering have developed a novel integrated brain imaging system that utilizes an ultra-dense electrode-based device. This system provides high resolution of functional brain images spatially and temporally.

Multi-Modal Haptic Feedback System

UCLA researchers in the Department of Bioengineering have developed multi-modal haptic feedback systems that are able to simulate the synergistic relationship between the various feedback modalities involved in real human touch. These multi-modal haptic feedback systems hold the promise of eliminating long-standing problem and helping expand the application of robotics in surgical sciences.

Lensfree Tomographic Imaging

UCLA researchers in the Department of Electrical Engineering have developed a system for lens-free tomographic imaging.

Oral Microsensor Arrays for Remote Monitoring of Salivary Electrolytes for Precision Healthcare

UCLA researchers in the Department of Oral & Maxillofacial Surgery have developed a novel microsensor system for unobtrusive monitoring of oral pH and electrolytes levels. This system is integrated into a data analysis and feedback network for disease prevention and precision care.

Near-Realistic Sports Motion Analysis and Activity Monitoring

UCLA researchers in the Department of Computer Science have developed a new technology to fight the growing obesity epidemic by encouraging exercise in video games.

Colorimetric Sensing Of Amines

An affordable and easily synthesized indicator that can be applied to monitor reaction progress in a system using only one inexpensive and non-toxic agent.

Apparatus and Signal Processing Technique for Real-Time Label-Free High-Throughput Cell Screening

UCLA researchers in the Department of Bioengineering have invented a novel apparatus for real-time label-free high-throughput cell screening.

Plasmonic Nanoparticle Embedded PDMS Micropillar Array and Fabrication Approaches for Large Area Cell Force Sensing

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a novel cell force sensor platform with high accuracy over large areas.

Nondestructive System for Quantitative Evaluation of Cartilage Degradation and Regeneration

Researchers at the University of California, Davis, have developed a minimally invasive fluorescence based imaging system for the quantitative detection of cartilage health.

Simple All-in-One UV Waveguide Microscope with Illumination Sectioning for Surface Morphology and Fluorescence Imaging

Researchers at the University of California, Davis have developed an all-in-one microscope combining ultraviolet excitation light with a waveguide directly integrated onto a light microscope stage, capable of providing surface morphology and fluorescence information with minimal sample preparation.

High Frequency Digital Frequency Domain Fluorescence Lifetime Imaging System For Applications On Tissues

The technology is a software/hardware combination designed to enhance sampling rate for frequency domain fluorescence lifetime imaging. Fluorescence lifetime imaging microscopy (FLIM) is a technique that uses signals emitted from fluorescent samples to construct images of those samples in near real time. An advantage to FLIM is its ability to image large fields of view, which makes it an attractive option for dynamical measurements of live biological tissues. The higher sampling rate available using this technology will allow for more information to be gleaned from biological samples, which may have a fluorescence band up to 1 GHz, advancing tissue imaging.

Mobile Phone Based Fluorescence Multi-Well Plate Reader

UCLA researchers have developed a novel mobile phone-based fluorescence multi-well plate reader.

Platform for predicting a compound’s cardioactivity

The invention is a platform that combines a screening system and machine learning algorithms to investigate and report the cardio-activity related information of a certain compound. Through screening cardiac tissue strips, the platform determines whether a compound is cardio-active or not, as well as the associated cardio-active mechanism based on a drug library that is automatically developed. Such information is crucial for the drug development process, especially for evidence based decisions.

  • Go to Page: