Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Nanotechnology > Electronics

Categories

[Search within category]

Anti-Ferromagnetic Magneto-Electric Spin-Orbit Read Logic

UCLA researchers in the department of Electrical Engineering have developed a novel magetoelectric device for use as a spin transistor.

Full Color Quantum Dot Patterning Via Soft Lithography

UCLA researchers in the Department of Chemistry and Biochemistry have developed a novel quantum dot patterning method via soft lithography. It allows cost-effective, large-scale and high resolution full-color quantum dots patterning, which will revolutionize the nanoelectronics and QD-based display industries.

Selective Chemical Bath Deposition of IrOx on Thin Film Structure

UCLA researchers in the Department of Bioengineering have developed a selective chemical bath deposition method to create IrOx thin films.

Respiratory Monitor For Asthma And Other Pulmonary Conditions

A patch sensor that is able to continuously monitor breathing rate and volume to diagnose pulmonary function and possibly predict and possibly prevent fatal asthma attacks.

Synthesis Of Graphene Nanoribbons From Monomeric Molecular Precursors Bearing Reactive Alkyne Units

Researchers in the Department of Chemistry and Biochemistry have developed a novel graphene nanoribbon synthesis, which have numerous applications in electronic devices.

Transparent Bulk Photoluminescent Quantum Dots/Polymer Nanocomposite

UCLA researchers in the Department of Materials Science and Engineering have developed highly transparent, photoluminescent nanocomposites containing record-high levels of quantum dots.

Pore Size Engineering Of Porous Carbons Using Covalent Triazine Frameworks As Precursors

UCLA researchers in the Department of Chemistry and Biochemistry have developed a new method to engineer uniform pore sizes within porous carbon utilizing a covalent triazine frameworks as precursors.

3D Magnetic Topological Structures for Information Storage

Researchers at the University of California, Davis, have developed a new way to directly create 3-dimensional topological magnetic structures that allows for efficient information storage with potentially low energy dissipation.

Resistive Memory Write and Read Assistance Using Negative Differential Resistance Devices

UCLA researchers in the Department of Electrical Engineering have developed a new design of read and write circuitry using negative differential resistance devices to improve the performance of resistive memories.

Process For Electrodepositing Manganeese Oxide With Improved Rate Capabilities For Electrical Energy Storage

The invention is a novel method for enhancing the energy, power and performance of lithium ion batteries. It applies a new process for electrodepositing Manganese Oxide in a way that improves the electrical properties as well as the rate at which the battery can operate. Using this method, the energy storage capabilities is boosted significantly; making it faster, more reliable and enabling various applications to become more dependent on electric/battery solutions.

A Hybrid Silicon Laser-Quantum Well Intermixing Wafer Bonded Integration Platform

An approach for integrating InP-based photonic devices together with low loss silicon photonics and complementary metal-oxide-semiconductor (CMOS) electronics.

Concentration Of Nanoparticles By Zone Heating Method

UCLA researchers in the Department of Mechanical and Aerospace Engineering have invented a novel method to concentrate nanoparticles (NPs) into metal crystals via zone melting.

Mechanical Process For Creating Particles Using Two Plates

UCLA researchers in the Department of Chemistry and Biochemistry & Physics and Astronomy have developed a novel method to lithograph two polished solid surfaces by using a simple mechanical alignment jig with piezoelectric control and a method of pressing them together and solidifying a material.

Tunable Thz Generation In Chip-Scale Graphene

UCLA researchers in the Department of Electrical Engineering have developed a novel tunable and efficient terahertz (THz) plasmon generation on-chip via graphene monolayers.

A Structure For Increasing Mobility In A High-Electron-Mobility Transistor

A technique that results in a significant increase of electron mobility and sheet charge density at small channel thickness.

High Performance and Flexible Chemical And Bio Sensors Using Metal Oxide Semiconductors

UCLA researchers in the Department of Materials Science and Engineering have developed a simple method producing thin, sensitive In2O3-based conformal biosensors based on field-effect transistors using facile solution-based processing for future wearable human technologies as well as non-invasive glucose testing.

Evaporation-Based Method For Manufacturing And Recycling Of Metal Matrix Nanocomposites

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a new method to manufacture and recycle metal matrix nanocomposites.

Silver Nanowire-Indium Tin Oxide Nanoparticle As A Transparent Conductor For Optoelectronic Devices

UCLA researchers in the Department of Materials Science and Engineering have developed a novel composite material made of metal oxide nanoparticles (NPs) and silver nanowires (AgNWs).

Methods of Self-Calibration for Coriolis Vibratory Gyroscopes

The levels of long-term instabilities in bias and scale factor are key characteristics for the utilization of gyroscopes in many practical applications in navigation, positioning, and targeting systems. The inventors at UCI have developed two methods for gyroscope calibration: 1) Utilizing the mechanical quadrature error and 2) Utilizing the voltages of amplitude gain control (AGC) of the drive-mode. The new methods have been combined with feedback signals from a third technique, Side-Band Ratio (SBR) detection, to produce bias stability of 0.1 deg/hr after 300 seconds that is maintained for over 3 hours.

Synthesis Technique to Achieve High-Anisotropy FeNi

Researchers at the University of California, Davis have developed an innovative synthesis approach to achieve high anisotropy L1 FeNi by combining physical vapor deposition and a high speed rapid thermal annealing (RTA).

Ultrafine Nanowires As Highly Efficient Electrocatalysts

UCLA researchers in the Department of Chemistry and Biochemistry have developed a novel process of synthesizing ultrafine jagged Pt nanowires with a record high utilization efficiency for fuel cell catalyst applications.

Enhanced Cycle Lifetime With Gel Electrolyte For Mn02 Nanowire Capacitors

The invention is novel way of preparing electrodes for nanowire-based batteries and capacitors with extremely long cycle lifetimes. The proposed assemblies last much longer than any comparable state of the art nanowire energy storage device, without loss of performance, and are comparable to liquid electrolyte-based technologies in terms of their figures of merit.

Direct Optical Visualization Of Graphene On Transparent Substrates

96 Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Calibri; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} The ∼10% optical contrast of graphene on specialized substrates like oxide-capped silicon substrates, together with the high-throughput and noninvasive features of optical microscopy, have greatly facilitated the use and research of graphene research for the past decade.  However, substantially lower contrast is obtained on transparent substrates. Visualization of nanoscale defects in graphene, e.g., voids, cracks, wrinkles, and multilayers, formed during either growth or subsequent transfer and fabrication steps, represents yet another level of challenge for most device substrates.     UC Berkeley researchers have developed a facile, label-free optical microscopy method to directly visualize graphene on transparent inorganic and polymer substrates at 30−40% image contrast per graphene layer.  Their noninvasive approach overcomes typical challenges associated with transparent substrates, including insulating and rough surfaces, enables unambiguous identification of local graphene layer numbers and reveals nanoscale structures and defects with outstanding contrast and throughput. We thus demonstrate in situ monitoring of nanoscale defects in graphene, including the generation of nano-cracks under uniaxial strain, at up to 4× video rate.  

Gate-Induced Source Tunneling Field-Effect Transistor (Gistfet)

UCLA researchers in the Department of Electrical Engineering have developed a novel gate-induced source tunneling field-effect transistor (GISTFET).

Low-variability, Self-assembled Monolayer Doping Methods

Semiconductor materials are fundamental materials in all modern electronic devices. Continuous demand for faster and more energy-efficient electronics is pushing miniaturization and scaling to unprecedented levels. Controlled and uniform doping of semiconductor materials with atomic accuracy is critical to materials and device performance. In particular, junction depth and dopant concentration need to be tightly controlled to minimize contact resistance, as well as variability effects due to random dopant fluctuations in the channel. Conventional doping methods such as ion implantation is imprecise and can have large variability effect. Moreover, energetic introduction of dopant species will often cause crystal damage, leading to incompatibility with nanostructured-materials and further performance degradation. To address these problems, researchers at the University of California, Berkeley, have experimented with an alternative approach to a wafer-scale surface doping technique first developed at the UC Berkeley in 2007. The team has demonstrated a controlled approach for monolayer doping (MLD) in which gas phase dopant-containing molecules form low-variability, self-assembled monolayers (SAM) on target semiconductor surfaces.

  • Go to Page: