Please login to create your UC TechAlerts.
Request a new password for
Required
Next Generation Led-Chemical Home Drinking Water Purifier For Removal Of Organic Contaminants, Pathogens And Lead
Brief description not available
Phosphorus Pentoxide Additive for Lithium-ion Batteries
Catalysts For Aqueous Contaminant Reduction
Acid-Free Synthesis of Electrocatalyst Technology
The present invention describes a novel method for acid-free pyrolytic synthesis of metal-nitrogen-carbon (M-N-C) catalysts for use in fuel cell/energy conversion applications. This method allows for rapid production of M-N-C catalysts that exhibit high activity and selectivity for CO2 electroreduction without needing harsh acids or bases.
Efficient and Selective Upcycling of Polyethylene to Alkylbenzenes under Moderate Hydrogen Pressure
New Recycling Methods For Li-Ion Batteries
Prof. Juchen Guo and his research team have discovered novel methods that use a liquid reagent to extract close to 100% of the metals lithium (Li), cobalt (Co), nickel (Ni) and manganese (Mn) from LiCoO2 (LCO) and LiNixMnyCo(1-x-y)O2 (NMC) cathodes, efficiently. This low cost process is easy to implement, scale up, low cost and is environmentally friendly.
Heterogeneous Ruthenium Catalysts for Olefin Metathesis
Professor Matthew Conley from the University of California, Riverside has developed heterogeneous ruthenium catalysts for olefin metathesis. These catalysts have higher activity than state-of-the-art homogeneous catalysts in metathesis of terminal olefins. They are combined with state-of-the-art anion capped materials that anchor positively charged Grubbs catalyst to the surface to form active heterogeneous olefin metathesis catalyst. This technology has the potential to produce heterogeneous catalysts that are less expensive, more efficient, and faster than the available homogenous ruthenium catalysts for olefin metathesis. Fig 1: Chemical structure of UCR’s heterogneous Grubb’s catalyst supported on functionalized silica for olefin metathesis.
Camellia Sinesis Rapid Growth Platform
Researchers at the University of California Davis have developed a rapid growth platform that aims to decrease crop production time, allow for tunable sensory attributes, and decrease carbon emissions.
High-Throughput Selection Platform to Obtain NMN+-Utilizing Enzymes Through Directed Evolution
Noncanonical redox cofactor-based biotransformation is an attractive low-cost alternative to traditional cell-free reductive biotransformation. However, engineering enzymes to utilize noncanonical redox cofactors has been challenging. Addressing this problem, researchers at UC Irvine have developed a high-throughput directed evolution platform that enables development of such enzymes with ~147-fold improved catalytic efficiency, which translates to an industry-viable total turnover number of ~45,000 in cell-free biotransformation without requiring high cofactor concentrations.
High Yield Co-Conversion of Lignocellulosic Biomass Intermediates to Methylated Furans
Prof. Charles Cai and colleagues from the University of California, Riverside have developed a method for high yield co-conversion of lignocellulosic biomass to produce high octane fuel additives dimethyl furan (DMF) and methyl furans (MF). This technology works by using Cu-Ni/TiO2, a unique catalytic material that enables high yield (~90%) conversion of 5-(hydroxymethyl)furfural (HMF) and furfural (FF) sourced from lignocellulosic biomass into methylated furans (MF) in either single or co-processing schemes. This invention is advantageous compared to existing technologies due to its high yield and efficiency, low cost, and stable conversion process. Fig 1: UCR’s furfural conversion and product yields as function of reaction time over Cu-Ni/TiO2.
Low-Cost Synthesis of High Performance Polyurethanes
Professor Charles Cai from the University of California, Riverside has developed a method to produce a high-performance, renewable polyurethane material made from biomass lignin for use as an adhesive, resin, coating, or plastic. In this method, diols were introduced to realize faster and complete dissolution of technical lignins in volatile organic solvents, which improve lignin miscibility with other components and its dispersion in the PU materials. This technology is advantageous because it improves the economic viability of lignocellulosic biorefinery, can replace petroleum-based polyols in commercial polyurethanes products to reduce carbon footprint, and, as a natural UV-block, lignin reduces the UV aging of PU materials. Fig 1: The UCR method to produce polyurethane material from biomass lignin.
A Tunable Deep Uv Photochemical System To Destruct Contaminants Including Per-/Poly-Fluorinated Chemicals (Pfas) From Water
Relationship Between Zsm-5 Pore Modifications And Gallium Proximity And Liquid Hydrocarbon Number Distribution From Ethanol Oligomerization
Multicolor Photonic Pigments From Magnetically Assembled Nanorod Arrays
Magnetochromatic Spheres
Using Small Molecule Absorbers To Create A Photothermal Wax Motor
Chromium Complexes Of Graphene
Solution Processing Of Transition Metal Dichalcogenide Thin Films
Synthesis Of Metal Oxide And Nitride Hollow Nano And Microspheres With Tunable Particle Size, Crystallinity, Porosity For Energy And Env. Applications
Templated Synthesis Of Metal Nanorods
Magnetically Responsive Photonic Nanochains
Magnetically Tunable Photonic Crystals In Nonpolar Solvents
Carbon Dioxide Flow Battery
Inventors at UCI have developed a novel electrocatalyst that reversibly converts carbon dioxide to its reduced form for the power source of a flow battery. The incorporation of this novel electocatalyst allows a common chemical, such as carbon dioxide to be included in the flow battery providing more affordable alternative than what is currently used. Furthermore, this technology has increased solubility, improving the energy density of the battery.
Molten Salt Chemical Looping Process for Efficient Chlorine Production from HCl
Direct Synthesis of Light Olefins from Carbon Dioxide using Yttria-Stabilized Zirconia Support
The production of light olefins (ethylene, propylene and butylene) via the activation of carbon dioxide as a feedstock is a challenging reaction that requires intermediate steps and often suffers from low yields. The researchers at the University of California, Irvine, discovered a novel bifunctional catalyst comprising of Zirconium and Indium combined with a zeolite matrix to promote the production of light olefins in higher efficiency and yields.