Please login to create your UC TechAlerts.
Request a new password for
Required
Depletion and Replacement of Brain Border Myeloid Cells
A novel method for selectively targeting and modulating brain border-associated myeloid cells for the treatment of neurological disorders.
Orthogonal Redox Cofactor for Enhanced Biomanufacturing Flexibility
Introducing a groundbreaking orthogonal redox cofactor, NMN+, to revolutionize redox reaction control in biomanufacturing.
Highly Selective Catalyst Composition for Efficient Ethylene Oxide Production
Brief description not available
Organic Crystallinecomposites as New Cryogenic Energy Materials
Researchers at the University of California, Davis have developed a technology that introduces a class of organic compounds capable of releasing clean energy upon cooling to cryogenic temperatures.
Electrolyte Formulations for Non-Aqueous Flow Batteries
Researchers at the University of California, Davis have developed a technology that introduces new electrolyte compositions that significantly enhance the stability and efficiency of non-aqueous flow batteries.
Spectral Kernel Machines With Electrically Tunable Photodetectors
Spectral machine vision collects both the spectral and spatial dependence (x,y,λ) of incident light, containing potentially useful information such as chemical composition or micro/nanoscale structure. However, analyzing the dense 3D hypercubes of information produced by hyperspectral and multispectral imaging causes a data bottleneck and demands tradeoffs in spatial/spectral information, frame rate, and power efficiency. Furthermore, real-time applications like precision agriculture, rescue operations, and battlefields have shifting, unpredictable environments that are challenging for spectroscopy. A spectral imaging detector that can analyze raw data and learn tasks in-situ, rather than sending data out for post-processing, would overcome challenges. No intelligent device that can automatically learn complex spectral recognition tasks has been realized. UC Berkeley researchers have met this opportunity by developing a novel photodetector capable of learning to perform machine learning analysis and provide ultimate answers in the readout photocurrent. The photodetector automatically learns from example objects to identify new samples. Devices have been experimentally built in both visible and mid-infrared (MIR) bands to perform intelligent tasks from semiconductor wafer metrology to chemometrics. Further calculations indicate 1,000x lower power consumption and 100x higher speed than existing solutions when implemented for hyperspectral imaging analysis, defining a new intelligent photodetection paradigm with intriguing possibilities.
Low-Cost Liquid Electrolytes For Room-Temperature Fluoride Ion Batteries
This invention introduces a groundbreaking liquid electrolyte for fluoride-ion batteries, offering high electrochemical stability, superior ionic conductivity, and excellent thermal stability.
BMSO: A Novel Sulfoxide-Containing Cleavable Cysteine Crosslinker
BMSO represents a groundbreaking advancement in crosslinking mass spectrometry (XL-MS), enabling comprehensive mapping of protein-protein interactions.
A High Flux Microchannel Solar Receiver for Converting Solar Energy into Heat
Researchers at the University of California, Davis have developed an innovative technology that incorporates advanced microchannel architecture into scalable solar thermal receiver unit cells, enabling highly efficient solar energy conversion.
Generalized Polymer Compatibilizer
A novel approach to polymer compatibilization that enhances mechanical strength and compatibility across diverse polymer blends.
Palladium Based Catalyst For Co2 Reduction With High Co Tolerance
An innovative Palladium hydride catalyst that significantly enhances the electroreduction of carbon dioxide (CO2) to formate with exceptional tolerance for carbon monoxide (CO).
New Methods for Introducing Dynamic Crosslinks into Polymers
This technology capitalizes on azide-masked nitrene crosslinking chemistry to introduce a scalable and efficient method for the compatibilization and recycling of mixed plastics.
Efficient Method with Less Caustic Reagents to Synthesize Schrock Catalysts
Professors Richard Schrock, Matthew Conley, and colleagues from the University of California, Riverside have developed new Schrock catalysts in the form of tungsten cyclohexylidenes that can be produced in as few as three synthetic steps, using inexpensive and non-corrosive reagents. This technology forms metathesis-relevant alkylidenes from an olefin through a novel thermal mechanism that avoids a protonation/deprotonation mechanism. This technology is advantageous because it can enable a cost-effective access to metathesis active Schrock catalysts for industrial and research applications.
Fast-Curing Underwater Adhesive
A scalable and less toxic underwater adhesive developed from two small molecule precursors, providing fast and stable adhesion.
Self-Regenerative Ni-Doped Catio3/Cao For Co2 Capture And Utilization
Electrified Filters For Hexavalent Chromium Removal
While chromium (Cr) is recognized as an essential micronutrient, its hexavalent form, Cr(VI), is one of the ubiquitous metal contaminants prevalent in groundwater with toxicity and carcinogenic risks. After years of debate and analysis, California regulators adopted a limit of 10 ppb for Cr(VI) in drinking water in April 2024, which should lead to more stringent regulation of Cr(VI) nationwide and attract up to hundreds of millions of dollars in investment. Electroreduction of Cr(VI) to Cr(III) is a promising strategy for detoxication of Cr(VI), but the noble-metal-based and nanomaterial-based electrodes typically used for Cr(VI) reduction are expensive or require a complicated preparation process. Moreover, the majority of flat-sheet electrodes used in flow-by operation mode are constrained by surface area, which causes low mass transport, detoxication efficiency, and current efficiency, and generates high energy consumption. To meet these challenges, UC Berkeley researchers have developed a stainless-steel filter with the capability of selectively reducing Cr(VI) to Cr(III) in-situ during a single pass filtration process. The filter doesn’t require chemical inputs or generate waste sludge. It has demonstrated minimal electric energy consumption while removing Cr(VI) from real groundwater samples (Coachella Valley Water District, California, calculated at 0.00076 $/m3 –beating other techniques by several orders of magnitude). The water flux of the filter is adjustable to meet specific, realistic water treatment requirements, and it can furthermore be regenerated in-situ for long-term performance without off-site chemical-dependent cleaning procedures. This environmentally friendly filter efficiently removes Cr(VI) from traditional and non-traditional water sources using minimal energy input and with zero discharge, addressing critical issues in water scarcity and Cr(VI) contamination.
Multi-channel ZULF NMR Spectrometer Using Optically Pumped Magnetometers
While nuclear magnetic resonance (NMR) is one of the most universal synthetic chemistry tools for its ability to measure highly specific kinetic and structural information nondestructively/noninvasively, it is costly and low-throughput primarily due to the small sample-size volumes and expensive equipment needed for stringent magnetic field homogeneity. Conversely, zero-to-ultralow field (ZULF) NMR is an emerging alternative offering similar chemical information but relaxing field homogeneity requirements during detection. ZULF NMR has been further propelled by recent advancements in key componentry, optically pumped magnetometers (OPMs), but suffers in scope due to its low sensitivity and its susceptibility to noise. It has not been possible to detect most organic molecules without resorting to hyperpolarization or 13C enrichment using ZULF NMR. To overcome these challenges, UC Berkeley researchers have developed a multi-channel ZULF spectrometer that greatly improves on both the sensitivity and throughput abilities of state-of-the art ZULF NMR devices. The novel spectrometer was used in the first reported detection of organic molecules in natural isotopic abundance by ZULF NMR, with sensitivity comparable to current commercial benchtop NMR spectrometers. A proof-of-concept multichannel version of the ZULF spectrometer was capable of measuring three distinct chemical samples simultaneously. The combined sensitivity and throughput distinguish the present ZULF NMR spectrometer as a novel chemical analysis tool at unprecedented scales, potentially enabling emerging fields such as robotic chemistry, as well as meeting the demands of existing fields such as chemical manufacturing, agriculture, and pharmaceutical industries.
High-Speed, High-Memory NMR Spectrometer and Hyperpolarizer
Recent advancements in nuclear magnetic resonance (NMR) spectroscopy have underscored the need for novel instrumentation, but current commercial instrumentation performs well primarily for pre-existing, mainstream applications. Modalities involving, in particular, integrated electron-nuclear spin control, dynamic nuclear polarization (DNP), and non-traditional NMR pulse sequences would benefit greatly from more flexible and capable hardware and software. Advances in these areas would allow many innovative NMR methodologies to reach the market in the coming years. To address this opportunity, UC Berkeley researchers have developed a novel high-speed, high-memory NMR spectrometer and hyperpolarizer. The device is compact, rack-mountable and cost-effective compared to existing spectrometers. Furthermore, the spectrometer features robust, high-speed NMR transmit and receive functions, synthesizing and receiving signals at the Larmor frequency and up to 2.7GHz. The spectrometer features on-board, phase-sensitive detection and windowed acquisition that can be carried out over extended periods and across millions of pulses. These and additional features are tailored for integrated electron-nuclear spin control and DNP. The invented spectrometer/hyperpolarizer opens up new avenues for NMR pulse control and DNP, including closed-loop feedback control, electron decoupling, 3D spin tracking, and potential applications in quantum sensing.
Electrically Fueled Active Supramolecular Materials
Invention of a new platform for creating active supramolecular materials using electrical energy as the fuel.
Sinter-Free Low-Temperature 3D-Printing Of Nanoscale Optical Grade Fused Silica Glass
Researchers at UC Irvine have developed a new method to 3D-print free-form silica glass materials which produces products with unparalleled purity, optical clarity, and mechanical strength under far milder conditions than currently available techniques. The novel processing method has potential to radically transform microsystem technology by enabling development of silica-based microsystems.
Engineering Pasteurella Multocida Heparosan Synthase 2 (Pmhs2) For Efficient Synthesis Of Heparosan Heparin And Heparan Sulfate Oligosaccharides
Researchers at the University of California, Davis have developed improved variants of a Heparosan synthase supporting efficient synthesis of heparosan, heparin, and heparan sulfate analogs.
Legionaminic Acid Glycosyltransferases for Chemoenzymatic Synthesis of Glycans and Glycoconjugates
Researchers at the University of California, Davis have developed a method for preparing a glycan product containing a nonulosonic acid moiety by means of legionaminic acid transferase fusion proteins
Tungsten and Molybdenum Alkylidene Catalysts for Olefin Metathesis
Professors Richard Schrock and Matthew Conley from the University of California, Riverside have developed new W and Mo based alkylidene olefin metathesis catalysts that can be produced by activation of metathesis-inactive precursors, accessible from metal chloride precursors via as few as three synthetic steps, using visible light. 𝛃,𝛃'disubstituted tungsten cyclopentane complexes can be prepared in the dark and form alkylidenes through irradiation. This technology is advantageous because it can potentially regenerate used catalysts by irradiation with visible light, offering a sustainable and cost-effective approach for industrial and research applications. Fig 1: Synthetic scheme of alkylidenes from tungstacyclopentane complexes upon exposure to violet or blue light (405-445 nm). A number of tungstacyclopentanes have been prepared from W(NR)OR’)2Cl2 complexes through alkylation and reduction with diethylzinc in the presence of an olefin.
COMPOUNDS FOR MODULATING EPITHELIAL 15-(S)-LIPOXYGENASE-2 AND METHODS OF USE FOR SAME
Lipoxygenases (LOX) are enzymes that catalyze the peroxidation of certain fatty acids. The cell membrane is mostly made of lipids (which include fatty acids), and peroxidation can cause damage to the cell membrane. The human genome contains six functional LOX genes that encode for six LOX enzyme variants, or isozymes. The role that each LOX isozyme plays in health and disease varies greatly, spanning issues such as asthma, diabetes, and stroke. LOX enzymes are extremely difficult to target due to high hydrophobicity. Potential leads are often ineffective because they are either not readily soluble or not selective for a particular LOX enzyme. Studies have implicated human epithelial 15-lipoxygenase-2 (h15-LOX-2, ALOX15B) in various diseases. h15-LOX-2 is highly expressed in atherosclerotic plaques and is linked to the progression of macrophages to foam cells, which are present in atherosclerotic plaques. h15-LOX-2 mRNA levels are also highly elevated in human macrophages isolated from carotid atherosclerotic lesions in symptomatic patients. Children with cystic fibrosis had reduced levels of h15-LOX-2, which affects the lipoxin A4 to leukotriene B4 ratio. Furthermore, the interactions of h15-LOX-2 and PEBP1 changes the substrate specificity of h15-LOX-2 from free polyunsaturated fatty acids (PUFA) to PUFA-phosphatidylethanolamines (PE), leading to the generation of hydroperoxyeicosatetraenoic acid (HpETE) esterified into PE (HpETE-PE). Accumulation of these hydroperoxyl membrane phospholipids has been shown to cause ferroptotic cell death, which implicates h15-LOX-2 in neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and Huntington’s diseases.
Methods And Use Of Activating Endogenous Ion Channels
To gain a more comprehensive understanding of the contribution of specific cell populations to various physiological phenomena in an organism, it is crucial to control cells’ activity using their native proteins, such as ion channels and GPCRs, while maintaining precise cellular and temporal resolution. UC Berkeley researchers have pioneered a magnetogenetic technique named FeRIC (Ferritiniron Redistribution to Ion Channels), which combines the use of radio frequency (RF) magnetic fields and ion channels coupled with ferritin to control cell activity. The researchers demonstrated that the interaction between RF and ferritin produces ROS and oxidized lipids which ultimately activate the ion channels.