Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Materials & Chemicals > Polymers

Categories

[Search within category]

Low-Cost Synthesis of High Performance Polyurethanes

Professor Charles Cai from the University of California, Riverside has developed a method to produce a high-performance, renewable polyurethane material made from biomass lignin for use as an adhesive, resin, coating, or plastic. In this method, diols were introduced to realize faster and complete dissolution of technical lignins in volatile organic solvents, which improve lignin miscibility with other components and its dispersion in the PU materials. This technology is advantageous because it improves the economic viability of lignocellulosic biorefinery, can replace petroleum-based polyols in commercial polyurethanes products to reduce carbon footprint, and, as a natural UV-block, lignin reduces the UV aging of PU materials.   Fig 1: The UCR method to produce polyurethane material from biomass lignin.  

Medical Device: Electrode for Wearable Point-of-Care Health Monitoring

Researchers at the University of California, Irvine have fabricated a flexible and unobtrusive wearable electrode that can detect glucose at a very low limit of detection.In fact, the detection limits are the lowest ever reported for an enzyme-free sensor. This sensor is applicable for detecting glucose levels in saliva, sweat or tears, and can safely be used at home, especially by diabetic patients without the need to frequently draw blood.

Microchannel Polymer Heat Exchanger

Researchers at the University of California, Davis have developed a highly efficient microchannel polymer heat exchanger in a compact and lightweight design.

Synergistic Enzyme Mixtures to Realize Near-Complete Depolymerization in Blends

In this technology, the inventors introduce additives to purposely change the morphology of polycaprolactone (PCL) by increasing the bending and twisting of crystalline lamellae. These morphological changes immobilize chain-ends preferentially at the crystalline/amorphous interfaces and limit chain-end accessibility by the embedded processive enzyme. This chain end redistribution reduces the polymer-to-monomer conversion from >95% to less than 50%, causing formation of highly crystalline plastic pieces including microplastics. By synergizing both random chain scission and processive depolymerization, it is feasible to navigate morphological changes in polymer/additive blends and to achieve near complete depolymerization. The random scission enzymes in the amorphous domains create new chain ends that are subsequently bound and depolymerized by processive enzymes. Present studies further highlight the importance to consider host polymer morphological effects on the reactions catalyzed by embedded catalytic species.This is part of a patent family in compostable plastics.  

Fabricating Crystallinity Unique Carbon Nanowires (~5nm) with Ultrahigh Electrical Conductivity

UCI engineers have designed a new protocol for the synthesis of technology materials that uses electrospinning to draw polymers into ~5nm carbon nanowires.

Spray Coated Paint Based on Glass Bubbles for Buildings

Developing optical materials with a high solar reflectivity and high mid-infrared emissivity is important for coating the outdoor buildings. The authors proposed a spray coated paint based on glass bubbles which can be used to maintain the thermal environment of constructions.

2-D Polymer-Based Device for Serial X-Ray Crystallography

Researchers at the University of California, Davis have developed a single-use chip for the identification of protein crystals using X-ray based instruments.

Synthesis of Capsular Polysaccharides

Researchers at the University of California, Davis have developed a more cost effective and consistent method for producing capsular polysaccharides, a component of certain types of vaccines.

Optimizing Bipolar Membrane Interfaces to Catalyze Water Dissociation

Researchers at UCI have modified current commercial membranes to enhance efficiency of water dissociation at varying conditions for electrochemical technologies geared towards renewable fuel generation.

Method For Liquid-To-Solid Phase Separation Of Uranium And Uranyl Contaminant From Various Solutions

Researchers at UCI have developed a separation method for removing radioactive contaminants, specifically uranium contaminants, from liquid solutions.

Flow Chemistry Synthesis Of Diisocyanates From Algae Oil Derived Diacids

Isocyanates serve as important and versatile chemical intermediates in the manufacture of diverse products ranging from flexible and rigid polyurethane foams to agrochemicals and pharmaceuticals. The production of isocyanates today draws mainly from petrochemical raw materials, including benzene, toluene, propylene, and aniline, and they are produced industrially using phosgenation of alkyl or aromatic amines. This involves highly toxic phosgene and produces corrosive HCl, limiting synthetic applications.

Insulin Infusion Cannulas with Superior Performance

Researchers at UCI have developed the application of a biocompatible material to insulin infusion devices for Type 1 Diabetes to improve device strength, reduce scar tissue buildup, and increase the efficiency of insulin delivery.

A Phase-Changing Polymer Film for Broadband Smart Windows Applications

UCLA researchers in the Department of Materials Science and Engineering have developed an energy efficient smart window coating with wide light bandwidth and long cycle lifetimes.

Oxime Crosslinked Hydrogels To Prevent Postsurgical Cardiac Adhesions

Although a wide variety of hydrogels have been developed for a multitude of uses, various functional characteristics have been hard to capture in a controllable manner. A significant feature is the ability to ‘tune’ the gel so its gelling time can be controlled in a manner suitable to its application. In this disclosure, because the gel is both tunable and its composition allows it to bond to tissue, the inventors believe it can be used to address an unmet medical need – the formation of adhesions after cardiac surgery. Current methods used are either drug therapy or various physical barriers but their success is limited.

One-Pot Synthesis of Polyol from Algae Oil for Sustainable Polyurethanes

A large sector with potential for improvement is the polyurethane industry, which produces versatile polymers and foams for use in many commercial products. Production of these polymers is dependent on precursor polyols. Current production of industrial polyols is dominated by petroleum-derived polyethers, which is unsustainable and presents environmental hazards due to their poor degradation in the environment.

Spray Dry Method for Calcium Cross-linked Alginate Encapsulation of Biological and Chemical Moieties via the Use of Chelating Agents

Researchers at the University of California, Davis have developed a one-step spray dry calcium cross-linked alginate encapsulation process where the calcium is released from a chelating agent.

Antimicrobial and Osteoinductive Hydrogel for Dental Applications

UCLA researchers in the Department of Chemical & Biomolecular Engineering developed osteoinductive and antimicrobial hydrogel adhesives for dental applications.

Use Of Non-Ionic Copolypeptide Hydrogels For Cell Suspension And Cell And Molecule Delivery

UCLA researchers in the Departments of Bioengineering, Chemistry and Biochemistry, and Neurobiology have developed novel copolypeptide hydrogel formulations for the delivery of cells and molecules to locations throughout the body, including the central nervous system.

Material For Thermal Regulation

Researchers at UCI have developed a lightweight, flexible thermal material that, due to the extent that it is stretched, allows for tunable control of heat flow.

Flexible, Biocompatible Microfluidics-inspired Micro-reference Electrodes for Sensing Applications

Researchers at UCI have created miniaturized, flexible, biocompatible reference electrode with a streamline design capable of being used in a variety of different laboratory and clinical environments.

  • Go to Page: