Please login to create your UC TechAlerts.
Request a new password for
Required
New Methods for Introducing Dynamic Crosslinks into Polymers
This technology capitalizes on azide-masked nitrene crosslinking chemistry to introduce a scalable and efficient method for the compatibilization and recycling of mixed plastics.
Efficient Method with Less Caustic Reagents to Synthesize Schrock Catalysts
Professors Richard Schrock, Matthew Conley, and colleagues from the University of California, Riverside have developed new Schrock catalysts in the form of tungsten cyclohexylidenes that can be produced in as few as three synthetic steps, using inexpensive and non-corrosive reagents. This technology forms metathesis-relevant alkylidenes from an olefin through a novel thermal mechanism that avoids a protonation/deprotonation mechanism. This technology is advantageous because it can enable a cost-effective access to metathesis active Schrock catalysts for industrial and research applications.
Fast-Curing Underwater Adhesive
A scalable and less toxic underwater adhesive developed from two small molecule precursors, providing fast and stable adhesion.
Self-Regenerative Ni-Doped Catio3/Cao For Co2 Capture And Utilization
Brief description not available
Multi-channel ZULF NMR Spectrometer Using Optically Pumped Magnetometers
While nuclear magnetic resonance (NMR) is one of the most universal synthetic chemistry tools for its ability to measure highly specific kinetic and structural information nondestructively/noninvasively, it is costly and low-throughput primarily due to the small sample-size volumes and expensive equipment needed for stringent magnetic field homogeneity. Conversely, zero-to-ultralow field (ZULF) NMR is an emerging alternative offering similar chemical information but relaxing field homogeneity requirements during detection. ZULF NMR has been further propelled by recent advancements in key componentry, optically pumped magnetometers (OPMs), but suffers in scope due to its low sensitivity and its susceptibility to noise. It has not been possible to detect most organic molecules without resorting to hyperpolarization or 13C enrichment using ZULF NMR. To overcome these challenges, UC Berkeley researchers have developed a multi-channel ZULF spectrometer that greatly improves on both the sensitivity and throughput abilities of state-of-the art ZULF NMR devices. The novel spectrometer was used in the first reported detection of organic molecules in natural isotopic abundance by ZULF NMR, with sensitivity comparable to current commercial benchtop NMR spectrometers. A proof-of-concept multichannel version of the ZULF spectrometer was capable of measuring three distinct chemical samples simultaneously. The combined sensitivity and throughput distinguish the present ZULF NMR spectrometer as a novel chemical analysis tool at unprecedented scales, potentially enabling emerging fields such as robotic chemistry, as well as meeting the demands of existing fields such as chemical manufacturing, agriculture, and pharmaceutical industries.
High-Speed, High-Memory NMR Spectrometer and Hyperpolarizer
Recent advancements in nuclear magnetic resonance (NMR) spectroscopy have underscored the need for novel instrumentation, but current commercial instrumentation performs well primarily for pre-existing, mainstream applications. Modalities involving, in particular, integrated electron-nuclear spin control, dynamic nuclear polarization (DNP), and non-traditional NMR pulse sequences would benefit greatly from more flexible and capable hardware and software. Advances in these areas would allow many innovative NMR methodologies to reach the market in the coming years. To address this opportunity, UC Berkeley researchers have developed a novel high-speed, high-memory NMR spectrometer and hyperpolarizer. The device is compact, rack-mountable and cost-effective compared to existing spectrometers. Furthermore, the spectrometer features robust, high-speed NMR transmit and receive functions, synthesizing and receiving signals at the Larmor frequency and up to 2.7GHz. The spectrometer features on-board, phase-sensitive detection and windowed acquisition that can be carried out over extended periods and across millions of pulses. These and additional features are tailored for integrated electron-nuclear spin control and DNP. The invented spectrometer/hyperpolarizer opens up new avenues for NMR pulse control and DNP, including closed-loop feedback control, electron decoupling, 3D spin tracking, and potential applications in quantum sensing.
Electrically Fueled Active Supramolecular Materials
Invention of a new platform for creating active supramolecular materials using electrical energy as the fuel.
Sinter-Free Low-Temperature 3D-Printing Of Nanoscale Optical Grade Fused Silica Glass
Researchers at UC Irvine have developed a new method to 3D-print free-form silica glass materials which produces products with unparalleled purity, optical clarity, and mechanical strength under far milder conditions than currently available techniques. The novel processing method has potential to radically transform microsystem technology by enabling development of silica-based microsystems.
Engineering Pasteurella Multocida Heparosan Synthase 2 (Pmhs2) For Efficient Synthesis Of Heparosan Heparin And Heparan Sulfate Oligosaccharides
Researchers at the University of California, Davis have developed improved variants of a Heparosan synthase supporting efficient synthesis of heparosan, heparin, and heparan sulfate analogs.
Legionaminic Acid Glycosyltransferases for Chemoenzymatic Synthesis of Glycans and Glycoconjugates
Researchers at the University of California, Davis have developed a method for preparing a glycan product containing a nonulosonic acid moiety by means of legionaminic acid transferase fusion proteins
Tungsten and Molybdenum Alkylidene Catalysts for Olefin Metathesis
Professors Richard Schrock and Matthew Conley from the University of California, Riverside have developed new W and Mo based alkylidene olefin metathesis catalysts that can be produced by activation of metathesis-inactive precursors, accessible from metal chloride precursors via as few as three synthetic steps, using visible light. 𝛃,𝛃'disubstituted tungsten cyclopentane complexes can be prepared in the dark and form alkylidenes through irradiation. This technology is advantageous because it can potentially regenerate used catalysts by irradiation with visible light, offering a sustainable and cost-effective approach for industrial and research applications. Fig 1: Synthetic scheme of alkylidenes from tungstacyclopentane complexes upon exposure to violet or blue light (405-445 nm). A number of tungstacyclopentanes have been prepared from W(NR)OR’)2Cl2 complexes through alkylation and reduction with diethylzinc in the presence of an olefin.
COMPOUNDS FOR MODULATING EPITHELIAL 15-(S)-LIPOXYGENASE-2 AND METHODS OF USE FOR SAME
Lipoxygenases (LOX) are enzymes that catalyze the peroxidation of certain fatty acids. The cell membrane is mostly made of lipids (which include fatty acids), and peroxidation can cause damage to the cell membrane. The human genome contains six functional LOX genes that encode for six LOX enzyme variants, or isozymes. The role that each LOX isozyme plays in health and disease varies greatly, spanning issues such as asthma, diabetes, and stroke. LOX enzymes are extremely difficult to target due to high hydrophobicity. Potential leads are often ineffective because they are either not readily soluble or not selective for a particular LOX enzyme. Studies have implicated human epithelial 15-lipoxygenase-2 (h15-LOX-2, ALOX15B) in various diseases. h15-LOX-2 is highly expressed in atherosclerotic plaques and is linked to the progression of macrophages to foam cells, which are present in atherosclerotic plaques. h15-LOX-2 mRNA levels are also highly elevated in human macrophages isolated from carotid atherosclerotic lesions in symptomatic patients. Children with cystic fibrosis had reduced levels of h15-LOX-2, which affects the lipoxin A4 to leukotriene B4 ratio. Furthermore, the interactions of h15-LOX-2 and PEBP1 changes the substrate specificity of h15-LOX-2 from free polyunsaturated fatty acids (PUFA) to PUFA-phosphatidylethanolamines (PE), leading to the generation of hydroperoxyeicosatetraenoic acid (HpETE) esterified into PE (HpETE-PE). Accumulation of these hydroperoxyl membrane phospholipids has been shown to cause ferroptotic cell death, which implicates h15-LOX-2 in neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and Huntington’s diseases.
Methods And Use Of Activating Endogenous Ion Channels
To gain a more comprehensive understanding of the contribution of specific cell populations to various physiological phenomena in an organism, it is crucial to control cells’ activity using their native proteins, such as ion channels and GPCRs, while maintaining precise cellular and temporal resolution. UC Berkeley researchers have pioneered a magnetogenetic technique named FeRIC (Ferritiniron Redistribution to Ion Channels), which combines the use of radio frequency (RF) magnetic fields and ion channels coupled with ferritin to control cell activity. The researchers demonstrated that the interaction between RF and ferritin produces ROS and oxidized lipids which ultimately activate the ion channels.
Next Generation Led-Chemical Home Drinking Water Purifier For Removal Of Organic Contaminants, Pathogens And Lead
Phosphorus Pentoxide Additive for Lithium-ion Batteries
Catalysts For Aqueous Contaminant Reduction
Acid-Free Synthesis of Electrocatalyst Technology
The present invention describes a novel method for acid-free pyrolytic synthesis of metal-nitrogen-carbon (M-N-C) catalysts for use in fuel cell/energy conversion applications. This method allows for rapid production of M-N-C catalysts that exhibit high activity and selectivity for CO2 electroreduction without needing harsh acids or bases.
Efficient and Selective Upcycling of Polyethylene to Alkylbenzenes under Moderate Hydrogen Pressure
New Recycling Methods For Li-Ion Batteries
Prof. Juchen Guo and his research team have discovered novel methods that use a liquid reagent to extract close to 100% of the metals lithium (Li), cobalt (Co), nickel (Ni) and manganese (Mn) from LiCoO2 (LCO) and LiNixMnyCo(1-x-y)O2 (NMC) cathodes, efficiently. This low cost process is easy to implement, scale up, low cost and is environmentally friendly.
Continuous Polyhydroxyalkanoate Production By Perchlorate Respiring Microorganisms
Plastics are essential for the modern world but are also non-sustainable products of the petrochemical industry that negatively impact our health, environment, and food chain. Natural biogenic plastics, such as polyhydroxyalkanoates (PHA), are readily biodegradable, can be produced more sustainably, and offer an attractive alternative. The global demand for bioplastics is increasing with the 2019 market value of $8.3B expected to reach a compound annual growth rate of 16.1% from 2020-2027 (https://www.grandviewresearch.com/industry-analysis/bioplastics-industry). However, current PHA production is constrained by the underlying physiology of the microorganisms which produce them, meaning bioplastic production is currently limited to inefficient, batch fermentation processes that are difficult to scale.To address this problem, UC Berkeley researchers have developed a new system for PHA production wherein the PHA are generated continuously throughout microorganism growth lifecycles. The invention allows these sustainable bioplastics to be produced via precision continuous fermentation technology, a scalable and efficient approach.
Triacetic Acid Lactone Production by Thiolase BktB from Burkholderia
BACKGROUND: Triacetic acid lactone (TAL) is an important building block for a diverse set of chemicals and plastic polymers. Native pathways using microbes can serve as an environmentally-friendly and renewable source of TAL production. However, microbial production of TAL is limited to a few platform microbes. Further, native pathways using platform microbes such as E. coli show toxicity to TAL, which reduces its production. Therefore, there is a need for thiolases that provide higher yield and can be used in additional microorganisms. TECHNOLOGY OVERVIEW: Researchers at the Joint BioEnergy Institute (JBEI) have discovered novel thiolases for production of Triacetic acid lactone (TAL) via platform microorganisms. The discovered thiolases achieved production of 2.77 g/L of TAL when expressed in E. coli, which is the highest titer production reported using E. coli. The discovered thiolases were identified from homologs of Cupriavidus necator, and their TAL production was verified by in vitro and in vivo testing. Unlike the energetically expensive native TAL-producing enzyme 2-pyrone synthase, the discovered thiolases utilize acetyl-CoA instead of malonyl-CoA as an extension unit. The Burkholderia thiolases identified by the researchers can be engineered to further boost production of TAL in existing platform microorganisms such as E. coli, as well as other microorganisms such as yeasts. DEVELOPMENT STAGE: Validated system
Heterogeneous Ruthenium Catalysts for Olefin Metathesis
Professor Matthew Conley from the University of California, Riverside has developed heterogeneous ruthenium catalysts for olefin metathesis. These catalysts have higher activity than state-of-the-art homogeneous catalysts in metathesis of terminal olefins. They are combined with state-of-the-art anion capped materials that anchor positively charged Grubbs catalyst to the surface to form active heterogeneous olefin metathesis catalyst. This technology has the potential to produce heterogeneous catalysts that are less expensive, more efficient, and faster than the available homogenous ruthenium catalysts for olefin metathesis. Fig 1: Chemical structure of UCR’s heterogneous Grubb’s catalyst supported on functionalized silica for olefin metathesis.
Camellia Sinesis Rapid Growth Platform
Researchers at the University of California Davis have developed a rapid growth platform that aims to decrease crop production time, allow for tunable sensory attributes, and decrease carbon emissions.
High-Throughput Selection Platform to Obtain NMN+-Utilizing Enzymes Through Directed Evolution
Noncanonical redox cofactor-based biotransformation is an attractive low-cost alternative to traditional cell-free reductive biotransformation. However, engineering enzymes to utilize noncanonical redox cofactors has been challenging. Addressing this problem, researchers at UC Irvine have developed a high-throughput directed evolution platform that enables development of such enzymes with ~147-fold improved catalytic efficiency, which translates to an industry-viable total turnover number of ~45,000 in cell-free biotransformation without requiring high cofactor concentrations.
High Yield Co-Conversion of Lignocellulosic Biomass Intermediates to Methylated Furans
Prof. Charles Cai and colleagues from the University of California, Riverside have developed a method for high yield co-conversion of lignocellulosic biomass to produce high octane fuel additives dimethyl furan (DMF) and methyl furans (MF). This technology works by using Cu-Ni/TiO2, a unique catalytic material that enables high yield (~90%) conversion of 5-(hydroxymethyl)furfural (HMF) and furfural (FF) sourced from lignocellulosic biomass into methylated furans (MF) in either single or co-processing schemes. This invention is advantageous compared to existing technologies due to its high yield and efficiency, low cost, and stable conversion process. Fig 1: UCR’s furfural conversion and product yields as function of reaction time over Cu-Ni/TiO2.