Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Materials & Chemicals > Chemicals

Categories

[Search within category]

Method for Producing Amphiphilic and Amphoteric Soy Protein Colloids, Sub-Micron Fibers, and Microfibrils

Researchers at the University of California, Davis have developed a method for converting high molecular weight and complex globular proteins such as soy and pea into amphiphilic and amphoteric colloids, sub-microns fibers, and microfibrils important to multiple consumer and industrial applications.

Flow Chemistry Synthesis Of Diisocyanates From Algae Oil Derived Diacids

Isocyanates serve as important and versatile chemical intermediates in the manufacture of diverse products ranging from flexible and rigid polyurethane foams to agrochemicals and pharmaceuticals. The production of isocyanates today draws mainly from petrochemical raw materials, including benzene, toluene, propylene, and aniline, and they are produced industrially using phosgenation of alkyl or aromatic amines. This involves highly toxic phosgene and produces corrosive HCl, limiting synthetic applications.

Reversing COVID-19 associated ARDS and cytokine storm with N-acetylglucosamine

The rapid emergence and spread of a novel coronavirus disease (COVID-19) has caused a global pandemic. Excessive inflammation leading to acute respiratory distress syndrome (ARDS) is the primary driver of mortality in severe COVID-19 cases, and is yet to be addressed by current therapeutics. Researchers at UCI and Mt. Sinai Hospital have therefore developed an anti-inflammatory treatment using N-acetylglucosamine to lower the mortality and need for ventilators in critically ill COVID-19 patients.

XNA enzymes to Validate and Treat Genetic Diseases

Allelic proteins are often considered undruggable targets, because therapeutics that interfere with these proteins while leaving the wild-type protein unharmed are difficult to come by. Researchers at UCI have developed a xeno-nucleic enzyme (XNAzyme) that offers a solution to this problem by selectively cleaving the mRNA of mutant alleles while leaving the wild-type mRNA unharmed. This novel gene silencing technology offers an efficient, safe, and effective approach to treating genetic diseases.

Enhanced Block Copolymer Self-Assembly

Brief description not available

Efficient Production of Cellulase Enzymes Using Transient Agroinfiltration

Researchers at the University of California, Davis have developed a method to produce cellulase enzymes by utilizing agroinfiltration to transiently express full-length cellulases in plant tissue.

Antimicrobial and Osteoinductive Hydrogel for Dental Applications

UCLA researchers in the Department of Chemical & Biomolecular Engineering developed osteoinductive and antimicrobial hydrogel adhesives for dental applications.

Deconstructive Diversification Of Cyclic Amines Useful For Proline Tagging

A deconstructive strategy to transform saturated nitrogen heterocycles such as piperidines and pyrrolidines into halogen-containing acyclic amine derivatives through sequential Csp3–N/Csp3–Csp3 single bond cleavage followed by Csp3–halogen bond formation. The resulting acyclic haloamines serve as versatile intermediates that are expediently transformed into a variety of structural motifs through substitution reactions. In this way, skeletal remodeling, which constitutes a scaffold hop, can be achieved. The value of this deconstructive strategy has been demonstrated through the late-stage diversification of proline-containing peptides, thus achieving late-stage proline tagging.

Colorimetric Detoxifying Sensors for Fumigants and Aerosol Toxicants

Researchers at the University of California, Davis have developed a colorimetric sensor than can detect and detoxify fumigants simultaneously. 

Ambient Methane Functionalization Initiated by d0 Metal-Oxo Electrocatalyst

UCLA researchers in the Department of Chemistry and Biochemistry have developed a new strategy to electrochemically functionalize methane at low activation energies under ambient conditions.

Hydrodealkenylative C(Sp3)–C(Sp2) Bond Scission

UCLA researchers in the Department of Chemistry and Biochemistry have developed a new chemical reaction that combines ozone, an iron salt, and a hydrogen atom donor to enable hydrodealkenylative cleavage of C(sp3)–C(sp2) bonds in a widely applicable manner.

A Sustainable Alternative Route to Produce Methyl Methacrylate

A sustainable alternative route to produce Methyl methacrylate (MMA) in an engineered yeast strain.

Device and Method for Accurate Sample Injection in Analytical Chemistry

Researchers in the UCLA Departments of Bioengineering and Medical and Molecular Pharmacology and the UCSF Department of Bioengineering and Therapeutic Sciences have developed a novel microvalve injector for capillary electrophoresis (CE) that improves injection repeatability and consistency.

Method For Mitigation Of Alkali-Silica Reaction In Concrete Using Chemical Additives

UCLA researchers in the Department of Civil and Environment Engineering have developed a new alkali-silica reaction (ASR) mitigation method using calcium nitrate, which is an abundant, cost-effective alternative to current approaches.

Drug Combinations For Treatment Of Tinnitus, Vertigo, and Headache

UC Irvine researchers propose various combinations of medications for treatment of tinnitus and vertigo.

Synthesis Of Heteroatom Containing Polycyclic Aromatic Hydrocarbons

UCLA researchers in the Department of Chemistry & Biochemistry have developed an approach for synthesizing nitrogen-containing polycyclic aromatic hydrocarbons with high yield.

Nanocellulose-Assisted Exfoliation of Graphite to Few Layer Graphene

Researchers at the University of California, Davis have developed a high-yield method that utilizes the unique properties of cellulose nanofibrils (CNFs) to fabricate high-quality graphene from bulk graphite. This graphene can then be fabricated into graphene nanopapers, which have unique moisture and heat-sensing capabilities for applications in “smart” electronic devices and other uses.

A High Potency CYP3A4 Inhibitor for Pharmacoenhancement of Drugs

      CYP3A4 is the most clinically relevant drug metabolizing enzyme in the body, as it is responsible for the oxidation and breakdown of ~60% of current drugs on the market.  Researchers at UCI have developed novel CYP3A4 inhibitors, that are highly potent and more specific, exhibit fewer side effects, and are both cheaper, and easier to-synthesize than current commercially available CYP3A4 inhibitors. 

Combination of a drug with low level light therapy (LLT) for treatment of wounds

This is a combination of a drug and light technology for the purpose of accelerating the healing of wounds on the skin, ulcers, and elsewhere in the body. Both methods have been shown to accelerate wound healing, and combining the two will potentially result in more rapid healing than either would alone.  

Metal Triazolites

UCLA researchers in the Department of Chemistry and Biochemistry have developed a novel metal-organic framework (MOF) using triazole ligands that allows for facile modification with a variety of metals, which has unique gas separation and adsorption properties.

Isobutanol Production Using Metabolically Engineered Escherichia Coli

UCLA researchers at the Department of Chemical and Biomolecular Engineering have engineered Escherichia coli bacteria to produce isobutanol from glucose.

Novel Synthesis of Streptogramin A Antibiotics

A modular, scalable, chemical synthesis platform that produces new Streptogramin A class antibiotic candidates.

  • Go to Page: