Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Imaging > Molecular


[Search within category]

Development of Novel Fluorescent Puromycin Derivatives

Puromycin is an aminonucleoside antibiotic produced by the bacterium Streptomyces alboniger. Its mode of action is to inhibit protein synthesis by disrupting peptide transfer on ribosomes, leading to premature chain termination during protein translation. Puromycin blocks protein synthesis in both eukaryotes and prokaryotes and is routinely used as a research tool in cell culture. The native Puromycin is also used assays such as mRNA display. As such, derivatives have been synthesized in which the amino acid of the 3' end of adenosine based antibiotics is altered to change the compound's antibiotic activity. Other compounds have been synthesized with differing amino acids and functionalities to examine the effect it has on bacterial viability. The majority do not show useful absorption or emission profiles. What is needed is a method to track the compounds in biological systems.

Scanning Terahertz Nanoscopy Probe

UCLA researchers in the Department of Electrical Engineering have developed a Scanning Terahertz Nanoscopy (STN) system with significantly improved detection sensitivity and spatial resolution.

Equally Sloped (Pseudopolar) Tomography With Applications To Biological And Medical Imaging

UCLA researchers in the Department of Physics and Astronomy and the California NanoSystems Institute have developed a new tomographic imagine technique providing higher spatial resolution at a lower radiation dose.

A Device for Simultaneous Imaging and Irradiation of Small Tumors

UCLA researchers have developed a device to detect and irradiate solid tumors in the sub-millimeter size range. This device is a promising advancement to treating early stage cancer.

Cas12-mediated DNA Detection Reporter Molecules

Class 2 CRISPR-Cas systems are streamlined versions in which a single Cas protein (an effector protein, e.g., a type V Cas effector protein such as Cpf1) bound to RNA is responsible for binding to and cleavage of a targeted sequence. The programmable nature of these minimal systems has facilitated their use as a versatile technology that continues to revolutionize the field of genome manipulation.    Cas12 is an RNA-guided protein that binds and cuts any matching DNA sequence. Binding of the Cas12-CRISPR RNA (crRNA) complex to a matching single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA) molecule activates the protein to non-specifically degrade any ssDNA in trans. Cas12a-dependent target binding can be coupled to a reporter molecule to provide a direct readout for DNA detection within a sample.  UC Berkeley researchers have developed compositions, systems, and kits having labeled single stranded reporter DNA molecules that provide a sensitive readout for detection of a target DNA. 

Quantitative Deformability Cytometry: Rapid, Calibrated Measurements Of Cell Mechanical Properties

UCLA researchers in the Department of Integrative Biology and Physiology have developed a novel microfluidic device that enables rapid measurement of cell mechanical properties.

Cyclopentadiene Compounds For Use In Bioorthogonal Coupling Reactions

UCLA researchers in the Department of Chemistry have developed bioorthogonal coupling reactions for labelling biomolecules with molecular probes.

Lensfree Tomographic Imaging

UCLA researchers in the Department of Electrical Engineering have developed a system for lens-free tomographic imaging.

Cloud based platform for display and analysis of image time series

Current microscopy systems commonly used in biomedical research labs and companies generate large amounts of large data, known as image stacks. There is currently no easy, streamlined way to store, organize and analyze these datasets on a cloud. Researchers at UCI have developed a software consisting of a cloud-based data management and analysis platform that make visualization and analysis of large image stacks simpler and faster.

Fabrication Method for Side Viewing Miniature Optical Elements with Free-Form Surface Geometry

Researchers at the University of California, Davis have developed a fabrication method for free-form reflective side viewing miniature optical elements to focus and reflect light with minimal chromatic aberrations.

An Osteoadsorptive Fluorogenic Substrate of Cathepsin K for Imaging Osteoclast Activity and Migration

UCLA researchers in the Department of Dentistry have developed a novel fluorescent probe for studying the role of osteoclasts in bone diseases and for detecting the early onset of bone resorption by targeting an important protein Cathepsin K. This probe can also deliver drug molecules to bone resorption sites with high specificity.

Frequency Doubled Pulsed Swept Laser

UCLA researchers in the Department of Electrical Engineering have invented a swept source laser that operates in the visible light range with a broad sweeping bandwidth.

The Brightest, Red-Shifted Luciferase-Luciferin Bioluminescent Pairs

Researchers at the University of California, Riverside, have developed several new luciferase-luciferin pairs that have superior brightness and excellent performance in vitro and in vivo. Through directed evolution of the existing NanoLuc Luciferase and the use of diphenylterazine (DTZ) as a substrate, the emission extensity is more than doubled compared to NanoLuc-furimazine. Moreover, red-shifted emission of teLuc-DTZ makes it an excellent tool for in vivo imaging. teLuc-DTZ streamlines a variety of applications to afford high sensitivity and reproducibility. Furthermore, fusing teLuc to a fluorescent protein creates the Antares2-DTZ pair, with emissions further red-shifted to the > 600 nm range and 65 times more photons emitted above 600 nm than FLuc-D-Luciferin. Fig. 1 shows the relative emission intensity and the range of emitted wavelengths of light  

Nondestructive System for Quantitative Evaluation of Cartilage Degradation and Regeneration

Researchers at the University of California, Davis, have developed a minimally invasive fluorescence based imaging system for the quantitative detection of cartilage health.

Simple All-in-One UV Waveguide Microscope with Illumination Sectioning for Surface Morphology and Fluorescence Imaging

Researchers at the University of California, Davis have developed an all-in-one microscope combining ultraviolet excitation light with a waveguide directly integrated onto a light microscope stage, capable of providing surface morphology and fluorescence information with minimal sample preparation.

Focusing And Amplifying Reflectarray Metasurfaces For Stable Laser Cavities

UCLA researchers in the Department of Electrical Engineering have developed a novel design of reflectarray metasurface that focuses and amplifies THz laser beams with record high efficiency and stability.

Mobile Phone Based Fluorescence Multi-Well Plate Reader

UCLA researchers have developed a novel mobile phone-based fluorescence multi-well plate reader.

Bioorthogonally-Engineered Extracellular Vesicles for Applications in Detection and Therapeutic Delivery

Extracellular vesicles (EVs) are promising as drug delivery carriers because they are inherently biocompatible, It would be desirable to efficiently, specifically, and rapidly change the EVs surface presentation to program the interactions with its target cells. Inventors at UC Irvine have developed a strategy for functionalizing the cellular membranes of EVs with precision and ease.

Single Fiber-Based Multimodal Biophotonic Imaging and Spectroscopy Platform

Researchers at the University of California, Davis have developed a highly flexible and reconfigurable optical imaging and spectroscopy platform.

A General Noise Suppression Scheme With A Reference Beam In Optical Heterodyne Spectroscopy

A methodology to suppress additive and convolved noise in optical heterodyne signals

Versatile Labeling of Protein N-Termini for Site-specific Bioconjugation

Improved subtiligase variants allow broad and versatile site-specific chemical modification or conjugation of proteins on their N-termini.

Fully Automated Synthesis Of 16B-[18F] Fluorodihydrotestosterone ([18F]-FDHT)

UCLA researchers in the Department of Molecular and Medical Pharmacology have developed a method for the fully automated synthesis of 16β- 18F-fluorodihydrotestosterone (18F-FDHT), a probe to monitor prostate cancer.

Time-Resolved Fluorescence Imaging Without Lifetime Fitting

UCLA investigators have developed a novel method to obtain time-resolved fluorescence imaging (TRFI) without the need to extract a fluorescence lifetime. Compared to conventional TRFI, this novel method is reliable, simple, time-saving and can dramatically improve biomedical applications of TRFI.

Holographic Opto-Fluidic Microscopy

UCLA researchers in the Department of Electrical Engineering have developed a system for holographic opto-fluidic microscopy.

Single Molecule Imaging and Sizing of DNA on a Cell Phone

UCLA researchers in the Department of Electrical Engineering have developed a light-weight and cost-effective fluorescence microscope installed on a cell phone.

  • Go to Page: