Browse Category:


[Search within category]

Novel Method Of Imaging Infection Using Radiotracers

UCSF researchers have invented novel radiotracers that allow imaging of both gram-positive and gram-negative bacteria infections using positron emission tomography (PET) to detect spread of infection and to distinguish that from other mimics.


Sucralose has become widely used as an artificial sweetener due in large part that it has low caloric content and is 600 times sweeter than table sugar (sucrose). Due to its resistance to metabolic degradation, sucralose can also be used as a marker for noninvasively assessing gastrointestinal small intestine or colonic permeability. This urinary marker is traditionally analyzed by time consuming and expensive methods, such as high performance liquid chromatography coupled to mass spectrometry or evaporative light scatter as the detectors. We have developed an alternative methodology of using a chemical-fluorescent technique for rapid analysis of halogenated disaccharides, such as sucralose.

External Cavity Laser Based Upon Metasurfaces

UCLA researchers in the Department of Electrical Engineering have developed a novel approach for terahertz (THz) quantum-cascade (QC) lasers to achieve scalable output power, high quality diffraction limited, and directive output beams.

Synthesis Technique to Achieve High-Anisotropy FeNi

Researchers at the University of California, Davis have developed an innovative synthesis approach to achieve high anisotropy L1 FeNi by combining physical vapor deposition and a high speed rapid thermal annealing (RTA).

Second Method For Nucleophilic Fluorination Of Aromatic Compounds With No-Carrier-Added [F-18] Fluoride Ion

UCLA researchers in the Department of Pharmacology have developed a novel aromatic nucleophilic fluorination reaction producing Fluorine-18 [F-18]-labeled aromatic compounds with extensive use in Positron Emission Tomography (PET).

Broadband Surface-Enhanced Coherent Anti-Stokes Raman Spectroscopy (SECARS) With High Spectral Resolution

UCLA researchers have developed a novel method to improve Raman spectroscopy sensitivity, spatio-temporal resolution, and broadband spectral range while reducing peak power and photo-damage.

Novel Synthesis Method provides better mixing and easier handing of Starting Materials

Researchers at the University of California, Davis have developed a one-step and spark plasma sintering consolidation method utilizing hydrides of potassium, sodium, lithium, and barium to prepare sintered and dense pellets of doped BaFe2As2 superconductors. 


The invention is a method for instantaneous and efficient extraction of radioactive isotopes with high specific activity, during continuous production at research reactors. The proposed method allows advantageous production of radioisotopes for various applications, including nuclear medicine uses (diagnostics, imaging, cancer treatments). In addition, the invention has the potential for applications related to isotopes used in thermoelectric generators (i.e. 238Pu) that power both medical devices, such as cardiac pacemakers, and deep space missions.

A Method For Accurate Parametric Mapping Based On Characterization Of A Reference Tissue Or Region

UCLA researchers in the Department of Radiological Sciences have developed a method to address the issue of B1+ field inhomogeneity that is becoming a persistent problem in higher field strengths. 

Novel Gadolinium-Free MRI Contrast Agents

Current FDA contrast agents usually involve heavy metals such as gadolinium (Gd).However, the slow clearance of Gd-based chelates may induce several severe diseases (i.e. nephrogenic systemic fibrosis). Many labs are looking for alternatives that don't involve this metal.

Combined Optical Micromanipulation & Interferometric Topography

Background: Optical tweezers (OTs) is a commonly used light-based technology with a broad range of applications in studying mechanobiology. While OTs are capable of making force measurements at the pico-Newton level, they cannot be used to provide size and structural information on the object being investigated. The platform technology developed at UCR provides simultaneous measurements of force and physical dimensions. Currently, many leading manufacturers for nanoanalytic instruments are expanding their operations in North America and Asia to support the growth of its application in the scientific community.   Brief Description: UCR researchers have developed COMMIT, an all-optical platform, by combining optical tweezers and a novel microscopy method. COMMIT allows for simultaneous measurement of nano-sized objects and pN forces. Existing methods call for fluorescent labels and lack high resolution in imaging. This platform facilitates dynamic measurement of transient nanomechanical properties of cells in real-time.

Visual Field Point-Wise Analyzer

UCLA researchers have developed a novel algorithm to track and predict the progression of patients with glaucoma.

Novel cyanobacteriochromes responsive to light in the far-red to near-infrared region

Researchers at the University of California, Davis have identified new cyanobacteriochromes (CBCRs) that detect and fluoresce in the far-red and near-infrared region of the electromagnetic spectrum.

An Accelerated Phase-Contrast MRI Technique

UCLA researchers in the Department Radiological Sciences have developed a technique for accelerated phase-contrast MRI, reducing total image acquisition time in the collection of high-resolution data.

Optical Phase Retrieval Systems Using Color-Multiplexed Illumination

Light is a wave, having both an amplitude and phase. Our eyes and cameras, however, only see real values (i.e. intensity), so cannot measure phase directly. Phase is important, especially in biological imaging, where cells are typically transparent (i.e. invisible) but yet impose phase delays. When we can measure the phase delays, we get back important shape and density maps.   Researchers at the University of California, Berkeley have developed a new method for recovering both phase and amplitude of an arbitrary sample in an optical microscope from a single image, using patterned partially coherent illumination. The hardware requirements are compatible with most modern microscopes via a simple condenser insert, or by replacing the entire illumination pathway with a programmable LED array, providing flexibility, portability, and affordability, while eliminating many of the trade-offs required by other methods. This enables quantitative imaging of phase from a single image, using partially coherent illumination, and in a way that is flexible and amenable to a variety of existing microscopy systems. 

Efficient Method to Improve the Temporal Signal-to-Noise of Arterial Spin Labeling for MRI

In conventional vessel encoded pseudo-continuous arterial spin labeling (PASL), the temporal signal to noise (tSNR) is improved by repeatedly applying pulsed labeling pulses in between Look-Locker readouts.  This works optimally when the temporal width of the tagged boluses matches the inter-pulse spacing. However, because the feeding arteries generally have different velocities and geometries, the conventional labeling slab fails to achieve desirable tSNR.  

Software for auto-generation of text reports from radiology studies

Imaging machines used for radiology studies often export data (such as vascular velocities, bone densitometry, radiation dose, etc.) as characters stored in image format. Radiologists are expected to interpret this data and also store it in their text-based reports of the studies. This is usually accomplished by dictating the data into the text report or copying it by typing it. However, these methods are error-prone and time-intensive.

A Real-time Intraoperative Fluorescent Imaging Device for Guided Surgical Excision of Microscopic Residual Tumors

This novel real-time imaging device can provide precise and rapid pathological imaging information of the tumor area by utilizing fluorescent or luminescent markers within the body to ensure complete surgical resection.

Patient-Specific Ct Scan-Based Finite Element Modeling (FEM) Of Bone

This invention is a software for calculating the maximum force a bone can support. The offered method provides an accurate assessment of how changes in a bone due to special circumstances, such as osteoporosis or a long duration space flight, might increase patient’s risk of fracture.

A Method For Determining Characteristic Planes And Axes Of Bones And Other Body Parts, And Application To Registration Of Data Sets

The invention is a method for deriving an anatomical coordinate system for a body part (especially bone) to aid in its characterization. The method relies on 3-D digital images of an anatomical object, such as CT- or MR-scans, to objectively, precisely, and reliably identify its geometry in a computationally efficient manner. The invention is a great improvement over the current practice of subjective, user-dependent manual data entry and visualization of bones and organs. The applications for well-defined anatomical coordinate systems include robotic surgeries, models for bone density studies, and construction of statistical anatomical data sets.

Monoclonal Antibody Against Cer164 (Clone 11)

Mouse monoclonal antibody against the human centrosomal protein 164kDa (Cep164). This antibody binds to the phosphorylation site of Cep164 and has been tested for use in immunocytochemistry/immunofluorescence, immunoprecipitation, and western blot.

Monoclonal Antibody Against ATR-IP (Clone 5)

Mouse monoclonal antibody against the human ATR-interacting protein (ATR-IP). This antibody has been tested for use in immunocytochemistry/immunofluorescence, immunoprecipitation, and western blot.

  • Go to Page: