Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Communications > Networking

Categories

[Search within category]

Time-Domain Mixed-Signal Vector-By-Matrix Multiplier

A time-domain mixed-signal VMM exploiting a modified configuration of 1 MOSFET-1 RRAM (1T-1R) array.

Digital Spur Cancellation Of Fractional Frequency Synthesizer

UCLA researchers in the Department of Electrical and Computer Engineering have developed a digital spur cancellation technique for frequency synthesizers used in clock synchronization.

A New Signal Analysis Method For Angle Of Arrival Estimation, Tracking, Localization, And Head Counting With Rf Signals

A new framework that enables the estimation of the AoA of signal paths from signal sources (both active transmitters and passive objects), with only signal magnitude measurements.

Security Key Generation Technique for Inter-Vehicular Visible Light Communication

The invention is a technique that provides a novel, reliable and secure cryptography solution for inter-vehicular visible light communication. Through combining unique data as the road roughness and the driving behavior, a symmetric security key is generated for both communicating vehicles. As the data used is unique to the communicating vehicles only, the generated keys are thus unique, securing a reliable communication channel between both vehicles.

Unsupervised WiFi-Enabled Device-User Association for Personalized Location-Based Services

With the emergence of the Internet of Things in smart homes and buildings, determining the identity and mobility of people are key to realizing personalized, context-aware and location-based services - such as adjusting lights and temperature as well as setting preferences of electronic devices in the vicinity. Conventional electronic user identification approaches either require proactive cooperation by users or deployment of dedicated infrastructure. Consequently, existing approaches are intrusive, inconvenient, or expensive to ubiquitously implement. For example: biometric identification requires specific hardware and physical interaction; and vision-based (video) approaches need favorable lighting and introduce privacy issues. To address this situation, researchers at UC Berkeley developed an identification system that uses existing, pervasive WiFi infrastructure and users' WiFi-enabled devices. The innovative Berkeley technology cleverly leverages attributes such as the MAC address and RSS of users' WiFi-enabled devices. Furthermore, the Berkeley approach is facilitated by an unsupervised learning scheme that maps each user identification with associated WiFi-enabled devices. This technology could serve as a vital underpinning for practical personalized context-aware and location-based services in the era of the Internet of Things.

Quarter-Rate Serial Link Receiver with Low Aperture Delay Samplers for High Data Rate Applications

Researchers at the University of California, Davis have developed a quarter-rate serial link receiver with low aperture delay samplers for use in high-speed serial link interconnects in network systems. This receiver decreases the parasitic capacitances that result from threshold adjustments and can drastically decrease the amount of power required for high data rate applications.

Robust High Speed Analog QAM Demodulator for Advanced Wireless Applications

Wireless applications are witnessing major advancement in fields like virtual reality and cellular phones, thus requiring much higher data transfer speed. This technology is a novel architecture for wireless receivers that accommodates such targeted high data rates, while maintaining a cost efficient design; power efficient while still utilizing simple circuits design, through replacing complicated digital blocks with innovative analog ones.

Multiple-Input Multiple-Output (MIMO) Communication System Using Reconfigurable Antennas

Multiple-Input Multiple-Output (MIMO) communication systems, which increase communication speed and signal quality using multi-path propagation, have become an essential part of modern wireless communication such as Wi-Fi and 4G mobile internet connectivity. UCI inventors have developed a wireless communication system architecture that, by using reconfigurable antennas, improves the data throughput capacity and lowers implementation cost and complexity for MIMO communication systems.

Silicon Based Chirped Grating Emitter for Uniform Power Emission

Researchers at the University of California, Davis, have developed a chirped grating emitter with ultra-sharp instantaneous field of view (IFOV) for optical beam-steering applications.

Hollow Plastic Waveguide ("Wave Cable") Based High Speed And Low Power Data Center Inter-Server Link

UCLA researchers in the department of Electrical Engineering have developed a novel and inexpensive plastic interconnect for high efficiency communication within data centers.

A Technique For Securing Key-Value Stores Against Malicious Servers

The advent of the Internet of Things (IoT) has drastically increased the potential scale and scope of destruction hackers can cause. Cloud servers now control and monitor devices such as cars, smart home controls, fitness trackers, medical monitoring systems. These cloud-based devices are at risk, however, in that if they become compromised, third parties could gain full control of all devices and stored information associated with that server. UCI researchers have developed the FIDELIUS system, a technique for secure communication and information storage.

Energy-Efficient All-Optical Nanophotonic Computing

Researchers at the University of California, Davis, have developed a new computing and signal processing platform based on nanophotonics and nanoelectronics to decrease power consumption and improve overall computing speed with all-optical inputs and outputs.

Method Of Localizing Breakdown In High Power Rf Network

Researchers in the Department of Physics have developed a method for detecting localized electrical breakdowns in high power RF networks.

A Circuit-Based Scalable and Low-Complex Optical Datacenter Network

The ever‐increasing bandwidth requirements of modern datacenters have led researchers to propose networks based upon optical circuit switches, but these proposals face significant deployment challenges. In particular, previous proposals dynamically configure circuit switches in response to changes in workload, requiring network‐wide demand estimation, centralized circuit assignment, and tight time synchronization between various network elements— resulting in a complex and unwieldy control plane. Moreover, limitations in the technologies underlying the individual circuit switches restrict both the rate at which they can be reconfigured and the scale of the network that can be constructed; a new approach is necessary.

Integrated Antennas And Phased Arrays With Mode-Fee Electromagnetic Bandgap Materials

The invention is a multifunctional electromagnetic structure that enhances antennas performance significantly. Built using an electromagnetic bandgap material, it eliminates scan blindness for phased array structures, along all scan directions. The invention simultaneously improves the radiation pattern as well.

Monitor Alarm Fatigue Allevation By SuperAlarms - Predictive Combination Of Alarms

UCLA researchers in the Department of Neurosurgery have developed a method that is capable of mining a collection of monitor alarms to search for specific combinations of encoded monitor alarms to predict certain adverse event, such as in-hospital code blue arrests or other target events.

High-Throughput Communication System

UCLA researchers have developed a set of source and operation codes for high-throughput (100 Gbps) communication system to approach channel capacity. This technique is unique in that it does not use reverse transmission confirming or denying message reception is provided which saves decoder computational power and improves efficiency especially at/near capacity.

Hemispherical Rectenna Arrays for Multi-Directional, Multi-Polarization, and Multi-Band Ambient RF Energy Harvesting

UCLA researchers in the Department of Electrical Engineering have developed a system that can receive RF waves in different frequency bands, from different directions, and with different polarizations to maximize energy harvested from ambient radio-frequency signals.

External Cavity Laser Based Upon Metasurfaces

UCLA researchers in the Department of Electrical Engineering have developed a novel approach for terahertz (THz) quantum-cascade (QC) lasers to achieve scalable output power, high quality diffraction limited, and directive output beams.

RF-Powered Micromechanical Clock Generator

Realizing the potential of massive sensor networks requires overcoming cost and power challenges. When sleep/wake strategies can adequately limit a network node's sensor and wireless power consumption, then the power limitation comes down to the real-time clock (RTC) that synchronizes sleep/wake cycles. With typical RTC battery consumption on the order of 1µW, a low-cost printed battery with perhaps 1J of energy would last about 11 days. However, if a clock could bleed only 10nW from this battery, then it would last 3 years. To attain such a clock, researchers at UC Berkeley developed a mechanical circuit that harnesses squegging to convert received RF energy (at -58dBm) into a local clock while consuming less than 17.5nW of local battery power. The Berkeley design dispenses with the conventional closed-loop positive feedback approach to realize an RCT (along with its associated power consumption) and removes the need for a sustaining amplifier altogether. 

Low-Profile Circularly-Polarized Single-Probe Broadband Antenna

UCLA researchers from the Department of Electrical Engineering have developed a new technology to enable single-layer single-probe circularly-polarized patch antennas with a compact size and broad axial ratio/impedance matching bandwidth.

MyShake: Earth Quake Early Warning System Based on Smartphones

Earthquakes are unpredictable disasters. Earthquake early warning (EEW) systems have the potential to mitigate this unpredictability by providing seconds to minutes of warning. This warning could enable people to move to safe zones, and machinery (such as mass transit trains) to be slowed or shutdown. The several EEW systems operating around the world use conventional seismic and geodetic network infrastructure – that only exist in a few nations. However, the proliferation of smartphones – which contain accelerometers that could potentially detect earthquakes – offers an opportunity to create EEW systems without the need to build expensive infrastructure. To take advantage of this smartphone opportunity, researchers at the University of California, Berkeley have developed a technology to allow earthquake alerts to be issued based on detecting earthquakes underway using the sensors in smartphones. Called MyShake, this EEW system has been shown to record magnitude 5 earthquakes at distances of 10 km or less. MyShake incorporates an on-phone detection capability to distinguish earthquakes from every-day shakes. The UC Berkeley technology also collects earthquake data at a central site where a network detection algorithm confirms that an earthquake is underway as well as estimates the location and magnitude in real-time. This information can then be used to issue an alert of forthcoming ground shaking. Additionally, the seismic waveforms recorded by MyShake could be used to deliver rapid microseism maps, study impacts on buildings, and possibly image shallow earth structure and earthquake rupture kinematics.

  • Go to Page: