Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Agriculture & Animal Science > Other

Categories

[Search within category]

Camellia Sinesis Rapid Growth Platform

Researchers at the University of California Davis have developed a rapid growth platform that aims to decrease crop production time, allow for tunable sensory attributes, and decrease carbon emissions.

Method For Generating Endotoxin-Free Gram-Negative Bacteria

The inventors have discovered that lipid A can be genetically eliminated from Caulobacter crescentus, dependent upon inactivation of the transcriptional regulator Fur and the presence of anionic sphingolipids called ceramide phosphoglycerate. The inventors identified and characterized genes responsible for ceramide phosphoglycerate synthesis. The inventors propose that other Gram-negative bacteria, including E. coli, can be engineered to eliminate lipid A by inactivating their Fur homologs, introducing genes for the synthesis of ceramide phosphoglycerate, or both. Bacteria thus engineered could be used for the endotoxin-free production of small molecule or protein-based pharmaceuticals, therapeutic bacteriophage, RNAs, or endotoxin-free therapeutic bacteria.BACKGROUND The bacterium Escherichia coli is used as a platform for the manufacture of 20-30% of the biopharmaceuticals currently marketed. E. coli, like other Gram-negative bacteria, possesses an outer membrane containing the glycolipid lipopolysaccharide (LPS). The innermost portion of LPS, lipid A, anchors LPS in the outer leaflet of the outer membrane. Lipid A, historically known as endotoxin, is a potent stimulator of the innate immune system in mammals. Even small amounts of endotoxin in the bloodstream can induce an unregulated, systemic inflammatory response known as sepsis. A major hurdle and cost in E. coli-based pharmaceutical production is the removal of endotoxin from each final product. Endotoxin removal strategies are developed on a case-by-case basis to find conditions in which the stable lipid A contaminant can be chemically separated from the desired product while not adversely affecting product recovery or activity. Industrial biotechnology could benefit from additional bacterial production platforms that eliminate the need for extensive processing to remove endotoxins. The challenge is that lipid A is almost always an essential structural component of the OM, meaning that it cannot be eliminated without causing the death of the bacterium. To date, only four species that normally contain lipid A have yielded mutant strains that completely lack lipid A and its biosynthetic precursors. However, these species are not well-developed platforms for industrial biotechnology. An E. coli strain (KPM22) has been developed that survives with only lipid IVA, an intermediate in the lipid A biosynthesis pathway. Lipid IVA contains fewer acyl chains than mature lipid A, causing a ~1000-fold reduction in its endotoxin activity. A modified version of this “endotoxin-free” strain is currently marketed by Lucigen under the trade name ClearColi (https://www.lucigen.com/faq-clearcoli.html).

Slow Ion/Salt-Releasing Biodegradable Hydrogel for Aqueous Applications

This invention is a biodegradable hydrogel mixed with minerals/chemical substances to slowly release ions/salts into the nearby aqueous waterbody through gradual abrasion of surface gel layers performed by underwater current.

Synthetic Biology Methods and Systems to Synthesize Strigolactone

Prof. Yanran Li and colleagues from the University of California, Riverside have developed a biosynthetic method for producing different strigolactones by designing different biosynthetic pathways in engineered microbial systems. The invention includes engineered E. coli - S. cerevisiae co-culture systems for the biosynthesis of both non-canonical and canonical SLs, including but not limited to carlactone (CL), carlactonic acid (CLA), 5-deoxystrigol(5DS), 4-Deoxyorobanchol (4DO) and orobanchol. This technology allows SLs to be biosynthetically produced in large scale for use in innovative  agrochemicals such as phyto-regulators,  fertilizers, biostimulants that enhance the nutrient uptake efficiency. Fig 1: Mimicking plant strigolactone pathway distribution in the engineered E. coli-S. cerevisiae coculture.

Non-melting, Sustainable, Reusable, Plastic-Free and Biodegradable Food Coolant Cubes

Researchers at the University of California, Davis, have developed a nature-based, plastic-free, non-melting, reusable, sustainable, self-cleanable (anti-fungal), and biodegradable robust cooling system for the applications in cold chains. The system has comparable cooling efficiency to traditional ice and drastically reduces water consumption, prevents potential microbial cross-contamination caused by melt-water, and eliminates the use of plastic and other synthetic materials.

Methods Of Use Of Cas12L/CasLambda In Plants

UC researchers have discovered a novel use of proteins denoted CasLamda/Cas12L within the Type V CRISPR Cas superfamily distantly related to CasX, CasY and other published type V sequences.  These CasLamda/Cas12L proteins utilize a guide RNA to perform RNA-directed cleavage of DNA.  The researchers have developed compounds and structures for use in in editing plant cells.

(SD2022-045) RUBY Plasmids: A reporter for noninvasively monitoring gene expression and plant transformation

Reporters have been widely used to visualize gene expression, protein localization, and other cellular activities, but the commonly used reporters require special equipment, expensive chemicals, or invasive treatments.

High-throughput Microfluidic Research Platform for Performing Versatile Single-Cell Molecular Timed-Release Assays within Droplets

Researchers at UCI have designed a high-throughput, cost-effective microfluidic platform as a research tool for performing genomic, proteomic, single-cell, pharmacological, and agricultural studies across multiple cell types.

Novel Artificial Vesicle Formulation to Deliver Anti-Fungal Gene Targeting RNAs for Crop Protection

Prof. Hailing Jin and colleagues from the University of California, Riverside have developed novel vesicle formulations to deliver antifungal siRNA as a spray so that crop damage and crop loss is minimized. These vesicle/siRNA formulations are used in Spray-Induced Gene silencing (SIGS) approaches to protect crops and post-harvest plant material from fungal pathogens and other pests. This new formulation is  an eco-friendly, effective, and cost-efficient alternative to traditional pesticides, and offers a way to target specific pathogen genes without the need for generating a GMO crop. Fig 1: External spray application of UCR SIGs (AVs-Bc-DCL1/2-dsRNA) inhibited B. cinerea virulence on tomato fruits, grape berries, lettuce leaves and rose petals compared to the water and control (YFP-dsRNA) (non-specific target sequence) treatments.

Use of Ozone and Infrared Heating as a Pre-treatment for Drying Fruit

Sequential ozone and infrared pre-treatments prior to hot air drying of fruit inactivates enzymes responsible for fruit browning, and concurrently reduces microbial contamination risk and air drying time.

Protein Inhibitor of Type VI-B CRISPR-Cas System

The inventors have discovered the first protein inhibitor of the type VI-B CRISPR-Cas system. By controlling this CRISPR system, one could possibly ameliorate the toxicity and off-target cleavage activity observed with the use of the type VI CRISPR system. Moreover, these proteins can also serve as an antidote for instances where the use of CRISPR-Cas technology poses a safety risk. Additionally, this technology can also be used for engineering genetic circuits in mammalian cells. This finding is of potential importance to many companies in the CRISPR space. 

Structured "Meat" Processes and Products from Cells Grown in Suspension Culture

Producing meat products using cells grown in culture (instead of via animal husbandry farming) has many benefits and great potential. Current cell-cultured approaches either: (1) use suspension culture to produce homogenous products that don't meet consumer taste expectations for a substitute meat, or (2) organ culture methods to create products that meet consumer taste expectations, but at unacceptably high prices. To address this situation, researchers at UC Berkeley have been developing a process by which cells are grown in free suspension, making possible the economies of scaling that result from using large stirred tanks. After growth, the cells can be assembled into desirable macroscopic structures by controlling the conditions under which the desired multiple cell types and scaffolds are mixed and dewatered. The macroscopic structures include features such as fat marbling and muscle fiber orientation as expected by meat consumers.

Improved guide RNA and Protein Design for CasX-based Gene Editing Platform

The inventors have developed two new CasX gene-editing platforms (DpbCasXv2 and PlmCasXv2) through rationale structural engineering of the CasX protein and gRNA, which yield improved in vitro and in vivo behaviors. These platforms dramatically increase DNA cleavage activity and can be used as the basis for further improving CasX tools.The RNA-guided CRISPR-associated (Cas) protein CasX has been reported as a fundamentally distinct, RNA-guided platform compared to Cas9 and Cpf1. Structural studies revealed structural differences within the nucleotide-binding loops of CasX, with a compact protein size less than 1,000 amino acids, and guide RNA (gRNA) scaffold stem. These structural differences affect the active ternary complex assembly, leading to different in vivo and in vitro behaviors of these two enzymes.

Sorting and Drying Methods for Off-ground Harvested Almonds

Researchers at the University of California, Davis have developed new methods for sorting and drying freshly harvested almonds with high processing and energy efficiency. 

Expressing Multiple Genes From A Single Transcript In Algae And Plants

Green algae have been promoted as vehicles for the production of biofuels, pharmaceuticals, food additives, vaccines, and for toxic substance remediation, and many plants are the focus of efforts to produce drought tolerant, pest resistant, or more nutritious crops. Many of these engineering efforts rely on expression of multiple transgenes (e.g. in a multistep metabolic pathway to avoid accumulation of a toxic intermediate). It can also be useful to produce two or more proteins in a particular stoichiometry, as in a heterodimer that requires equimolar production of two polypeptides. Whether the goal is to express one transgene, or several, most efforts to transform plants and algae require cotransformation of the gene of interest with a selectable marker, such as a gene that confers resistance to a drug or herbicide, or complements an auxotrophy. Unfortunately, commonly used methods for co-transformation of algae and other plants are very inefficient. UC Berkeley investigators have developed a method for polycistronic gene expression,  and show how to achieve this using the organism's own sequences, without recourse to viral elements or other foreign elements, which is important for any technology where bioproducts are generated, since these may be used on humans (cosmetics) or in humans (food additives), especially crop technology.

Foliar Formulation to Protect Plants from Abiotic Stress

Prof. Juan Pablo Giraldo and his colleagues from the University of California, Riverside have developed a foliar formulation for increasing crop protection and photosynthetic performance when crops are under light, heat, and salinity stress. This is achieved by applying a nanomaterial (poly (acrylic acid) nanoceria, PNC) that interacts with plant chloroplasts to reduce abiotic stress. The nanoparticle formulation uses a novel, scalable and biocompatible approach to protect plant seeds, seedlings, and mature plants from stress.  The emerging field of nano-enabled agriculture has the potential to create crops that are protected from climate change induced stresses and have enhanced photosynthesis.   Fig 1: a, Nanoceria (PNC) increases photosynthesis and biomass in Arabidopsis plants under stress. No nanoparticles (NNP) are shown as control. b, Substantial damage to Arabidopsis plants exposed to excess light was mitigated by PNC.  

Low Cost and Scalable Sap Feeding Insect Rearing and Gene Editing System

Profs. Peter Atkinson and Linda Walling at UCR have developed an in vitro rearing system on 3.5-cm and 6-cm  leaf disc plates that support egg to adult development in as little as 19 days. This system translates to a small-footprint, cost-effective rearing process, which can be industrialized, automated  and applied to other sap-feeding insects. Each plate may be used as an independent experiment or a mini-colony of a new whitefly genetic strain. Creating genetically modified whiteflies and other sap-feeding insects for genetic manipulation involves microinjecting embryos (eggs), which remain attached to excised leaf discs, which have been pretreated to remain viable throughout the whitefly life cycle.  This technology can be used to maintain colonies of whitefly in a more cost-effective way than existing approaches. In addition, this technology has been used to generate the first genetic mutants in the glassy-winged sharpshooter, Homalodisca vitripennis, a significant pest of Californian viticulture and thus opening the possibility of developing new strategies for its control and elimination. Fig. 1A shows a wild-type male whitefly and a mutant white male whitefly, which was generated by CRISPR/Cas9 mutagenesis using the leaf-disc injection and rearing protocols. Fig. 1 B shows a mosaic-eyed glassy-winged sharpshooter that was generated using the same technology.     Fig. 2 Each incubator (left) can hold up to 700 experiments/mini-whitefly colonies compared to the bugdorm (right), which houses one colony/experiment per tent. One incubator would replace ~11 biosafety level 2 (BSL2) greenhouses.    

Fusion Protein for Treatment of Inflammatory Diseases

Researchers at the University of California, Davis have developed a plant-based, fusion protein for use in the treatment of inflammatory diseases.

Development Of Biosensors For Drought Stress In Plants

Researchers at the University of California, Davis have developed a prototype biosensor that can monitor detectable levels of hormones present in plants experiencing drought or other environmental stress.

Single Conjugative Vector for Genome Editing by RNA-guided Transposition

The inventors have constructed conjugative plasmids for intra- and inter-species delivery and expression of RNA-guided CRISPR-Cas transposases for organism- and site-specific genome editing by targeted transposon insertion. This invention enables integration of large, customizable DNA segments (encoded within a transposon) into prokaryotic genomes at specific locations and with low rates of off-target integration.

TRM: HIF-1 alpha KO Mice (CRE)

Hypoxia-inducible factor 1-alpha is a transcriptional regulator of the adaptive response to hypoxia. When activated under hypoxic conditions, it can turn on over 40 genes involved in a variety of physiological activities. The dysregulation or alteration by mutation can lead to pathophysiology in areas of energy metabolism, cancer, cell survival and tumor invasion.

Method For Production Of Fatty Acids In Blue-Green Algae

Currently, renewable fatty acids are obtained solely from plant oils. Medium chain fatty acids (C8-C14) are typically sourced from coconut and palm oil, whereas longer chain saturated and unsaturated fatty acids are typically sourced from tallow, soy, corn or sunflower oil. Fatty acids are widely used for food, personal care products, industrial applications (e.g., lubricants, adhesives, detergents and plastics), as well as increasingly as biofuels. The demand for renewable fatty acids is rising and expanding. Given the current understanding of biological pathways it becomes possible to utilize other organisms, especially microorganisms, for the production of renewable chemicals such as fatty acids.

A Wearable Platform for In-Situ Analysis of Hormones

UCLA researchers in the Department of Electrical and Computer Engineering have developed a highly sensitive, wearable hormone monitoring platform.

Modified Enzymes to Improve Crop Yield

Researchers at the University of California have identified new modified versions of the carbon fixing enzyme, Phosphoenolpyruvate carboxylase (PPC).  in planta results show that the modified PPC enzymes confer upwards of a five fold increase in carbon fixation when compared to wild type plants. PPC dependent carbon fixation is key to photosynthesis, production of nutrients, and plants conditioning their growth environment. Plants with modified PPCs that increase carbon fixation and photosynthetic output will have increased plant productivity, which is critical for feeding a growing population. Additionally, by identifying surgical changes that can unleash the full productivity of plant PPC’s, it will be possible to increase the rate of depletion of atmospheric CO2.  The combination of these outcomes represents the opportunity to boost agricultural productivity, increase the amount of agriculturally available land by upwards of 100%, and improve the nutritional quality of plants all of which are dependent on removal of CO2 from our atmosphere.  Fig. 2 in vitro comparison of wild type (wt) and modified versions of maize PPC1, which is key to C4 photosynthesis, in the absence or presence of increasing amounts of the allosteric inhibitor, malate. Whereas version A is less affected by malate than wt, both versions B and C are largely unaffected by malate and have a 2-fold increase in activity compared to the wt version.  

  • Go to Page: