Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Agriculture & Animal Science > Animal Science

Categories

[Search within category]

Bioactive Plastics With Programmable Degradation And Microplastic Elimination

Although the plastic waste crisis has reached a breaking point, current recycling approaches are unable to remediate microplastic pollution. Biodegradable and renewable plastics have shown promise but impact neither microplastic elimination nor complete plastic recycling due to diffusion-limited enzymatic surface erosion and random chain scission. Here it is shown that nanoscopic dispersion of trace enzyme (e.g. lipase) in plastics (e.g. polycaprolactone [PCL]) leads to fully functional plastics with eco-friendly microplastic elimination and programmable degradation. Nanoscopic enzyme encapsulation leads to:continuous degradation to achieve 95% microplastic eliminationa single chain-based degradation mechanism with repolymerizable small molecule by-products via selective chain end scission rather than random chain scissionspatially- and temporally-programmable degradation of melt-processed host matrix due to the dependence of single chain degradation on local lamellae thickness regardless of bulk percent crystallinity formulation of conductive ink for 3-D printing with full recovery of the precious metal filler With recent developments in synthetic biology and genome information, nanoscopically embedding catalytically active enzymes in plastics may lead to an immediate, environmentally friendly and technologically viable solution toward microplastic elimination and material recycling.

Predictive Controller that Optimizes Energy and Water Used to Cool Livestock

Researchers at the University of California, Davis have developed a controller that applies environmental data to optimizing operations of livestock cooling equipment.

Methods for Producing Cultured Meat that has Heterogeneous Composition

UCLA researchers in the Departments of Integrative Biology and Physiology and Molecular, Cellular, and Developmental Biology have developed a novel method for the production of marbled, cultured meat with desirable texture and flavor.

Skin Microbiome Treatment For Animals

It is well established that human and animal skin harbours commensal bacteria that generally live on the skin without causing harm. Certain bacteria colonizing healthy skin produce molecules which effectively kill pathogens that cause infections in humans and animals. It was recently reported that patients with diseased skin, such as those with atopy, demonstrate a different array of bacterial species in their commensal skin microbiome compared to patients with healthy skin. Not only is the microbiome of healthy skin qualitatively different to atopic skin in the array of bacterial species present, but functional differences exist between the microbiome of healthy and diseased skin. Bacterial production of antimicrobial molecules is deficient in atopic patients compared to healthy individuals, which may be one reasons why atopic patients are predisposed to S. aureus infections.

A Wearable Platform for In-Situ Analysis of Hormones

UCLA researchers in the Department of Electrical and Computer Engineering have developed a highly sensitive, wearable hormone monitoring platform.

Method To Implement A Crispr-Cas9 Copycat Gene Drive In Rodents

Currently, alleles at multiple loci in the mouse genome must be combined by Mendelian genetics in crosses of animals to one another to produce a desired compound mutant genotype. For example, to combine homozygous mutations at two loci, animals that are heterozygous for each gene must be produced by breeding, and these are subsequently crossed to one another. Since the frequency of homozygosity for each allele is 1:4 the frequency of homozygosity for both genes is 1:16. Since the average litter of mice is approximately 10 pups, and the generation time from conception to reproductive age is about 3 months, this requires a substantial number of animals and time. With the addition of each new locus (three, four, etc), the cost measured in animals, time, and money increases exponentially. These factors increase substantially more if two or more loci are genetically linked, which requires rare recombination events to combine engineered alleles on the same chromosome. The CRISPR-Cas9 gene drive system stands to revolutionize rodent breeding. If each desired allele is encoded as a gene drive element that contains an sgRNA designed to target the same genomic location in the wild type homologous chromosome, each locus will be “driven” to homozygosity in the presence of Cas9. Therefore, in order to combine three alleles, for example, a mouse with one gene drive element (A) would be crossed to a mouse that encodes Cas9. Offspring of this cross would then be crossed to mice carrying gene drive element B, and these offspring would be crossed to mice carrying gene drive element C. In the presence of Cas9 at each generation, these gene drive elements at three distinct loci will be converted to homozygosity such that 50% of offspring, those that inherit Cas9, will be triple homozygous after three generations, even if they are genetically linked loci. A CRISPR-Cas9 mediated gene drive leverages the native cellular mechanism of homology directed repair to copy a desired allele from one chromosome to another. This process can convert a heterozygous genotype to homozygosity in a single generation. While CRISPR-Cas9 gene drives have been implemented in two species of insects, flies and mosquitos, it has not been reported in any non-insect animal species. 

DNA Methylation: A New Method for the Quantitative Predictor Of Age In Dogs

The ability to properly estimate the age of dogs would be quite useful in a variety of ways. For example, proper age estimation is important because age often plays a significant role when making medical decisions for pets. Currently, the accepted method to estimate age in dogs is based on the quality of teeth as well as ocular features. Estimating age based on tooth-wear (the commonly used metric in shelters) is very inaccurate after the teeth have fully erupted, generally by 6-7 months of age in dogs. Unfortunately, these methods have an accuracy of ~50% at best for domesticated pets and is error-prone for dogs between 2-8 years, encompassing a large portion of a dog’s adult life. Thus, shelters commonly underestimate the ages of these dogs to increase the likelihood of dogs being adopted, as people generally have a preference for younger pets. 

Composition Of Matter And Method For Leptospirosis Vaccine

Leptospirosis is one of the most widespread diseases estimated to infect up to 7-10 million people per year worldwide (2014) that can be transmitted from animals to humans. The most common transmission is via the urine of rodents or domestic animals that contaminates water or soil. Unfortunately, it can cause severe infection and currently there is not an efficient vaccine present to combat this disease. The disease is caused by Leptospira, a genus of the spirochaete bacteria of which there are ~13 pathogenic species that effect humans. The signs and symptoms of the disease are quite variable and can range from mild headaches, muscle pains, and fevers to the more severe form which causes bleeding from the lungs.

Genetic Test for Equine Immune-Mediated Myositis

Researchers at the University of California, Davis and Michigan State University have developed a genetic test to diagnose immune-mediate myositis in American Quarter Horses and related horse breeds.

Label Free Assessment Of Embryo Vitality

Researchers at UC Irvine developed an independent non-invasive method to distinguish between healthy and unhealthy embryos.

Enhanced Cell/Bead Encapsulation Via Acoustic Focusing

The invention consists of a multi-channel, droplet-generating microfluidic device with a strategically placed feature. The feature vibrates in order to counteract particle-trapping micro-vortices formed in the device. Counteracting these vortices allows for single particle encapsulation in the droplets formed by the device and makes this technology a good candidate for use in single cell diagnostics and drug delivery systems.

Production of Glycolipid PEFAs from Yeasts

Method of using basidiomycetous yeasts to convert carbohydrates to glycolipid biosurfactants

A Micro/Nanobubble Oxygenated Solutions for Wound Healing and Tissue Preservation

Soft-tissue injuries and organ transplantation are common in modern combat scenarios. Organs and tissues harvested for transplantation need to be preserved during transport, which can be very difficult. Micro and nanobubbles (MNBs) offer a new technology that could supply oxygenation to such tissues prior to transplantation, thus affording better recovery and survival of patients. Described here is a novel device capable of producing MNB solutions that can be used to preserve viability and function of such organs/tissue. Additionally, these solutions may be used with negative pressure wound therapy to heal soft-tissue wounds.

Novel Molluscicide

  Background: Slugs and snails are among the most problematic invasive agricultural and horticultural pests. They cause crop loss, reduce crop yield and quality, cause product shipment rejection, and transmit plant and human pathogens. The most commonly used chemical molluscicides are toxic to pets and other organisms. These chemical pesticides are also harmful to the environment, are not cost effective, and with variable effficacy that is highly influenced by environmental conditions such as moisture.   Brief Description: UCR researchers have developed a novel potential biopesticide that targets slugs and snails using the recently discovered US strain of the nematode species Phasmarhabditis hermaphrodita. The European strain of this nematode (Nemaslug ®) is being used to successfully manage slugs and snails in Europe. Recent surveys show that consumers in the US are willing to pay more for a more effective and environmentally safe pest management alternative for these invasive gastropods. Phasmarhabditis hermaphrodita (singly or in combination with P. californica or P. papillosa) can be used effectively to manage slug and snail infestations, notably European brown garden snail (Cornu aspersum), Giant African land snail (Lissachatina fulica), gray field slug (Deroceras reticulatum) and greenhouse slug (Lehmannia valentiana).  

New Effective Low-Cost Vaccines

Enteric disease and respiratory diseases are major problems worldwide which greatly impact human health, as well as animal health. Current vaccine approaches are limited by numerous factors, including production costs, efficacy, safety, requirement of adjuvants, and storage conditions. 

Monoclonal Antibody Against PNPase (Clone 4C11)

Mouse monoclonal antibody against the human mitochondrial polyribonucleotide nucleotidyltransferase 1 (PNPase). This antibody has been tested for use in immunocytochemistry/immunofluorescence, immunoprecipitation, and western blot.

Development Of Biodegradable Bait Station For Liquid Ant Bait

Background: Current bait station designs and other pest control tools are not very ideal nor advanced – they leak, become excessively hydrated or dehydrated, and need frequent maintenance. The global pest control services market is expected to grow annually at 5.3% and the industry is always looking for unique ways to conquer them.  Brief Description: UCR Researchers have developed a novel, protected bait station that has controlled liquid bait release. The compact design contains a sugary, insecticide liquid bait that diffuses through an absorbent polymer or gel matrix. Only ants have access to the station and once an ant consumes the bait, the station biodegrades thus eliminating bait station cleanup.

Development Of Pheromone Assisted Techniques To Improve Efficacy Of Insecticide Sprays Targeting Urban Pest Ant Species

Background: Pheromones are chemical secretions that dictate behavior in many social insects such as ants, bees and termites. They use them for various pivotal roles in foraging, nest relocation, defense and reproduction. Implementation of pheromone trails that lead urban pests to their imminent doom is a very notable, strategic approach. Current pest management programs are in need of better synthetic pheromone formulations for a more effective and species-specific utilization.   Brief Description: UCR Researchers have developed a novel synthetic pheromone compound and management system that lures targeted ant species to an insecticide-treated area. This pheromone-assisted technique will maximize the efficacy of insecticide sprays by reducing insecticide contact in the environment while increasing exposure of ants for eradication.  

Monoclonal Antibody against ATR-IP (Clone 11)

Mouse monoclonal antibody against the human ATR-interacting protein (ATR-IP). This antibody has been tested for use in immunocytochemistry/immunofluorescence, immunoprecipitation, and western blot.

Monoclonal Antibody Against CEP164 (Clone 13)

Mouse monoclonal antibody against the human centrosomal protein 164kDa (Cep164). This antibody binds to the phosphorylation site of Cep164 and has been tested for use in immunocytochemistry/immunofluorescence, immunoprecipitation, and western blot.

Monoclonal Antibody Against CEP164 (Clone 17)

Mouse monoclonal antibody against the human centrosomal protein 164kDa (Cep164). This antibody binds to the phosphorylation site of Cep164 and has been tested for use in immunoprecipitation and western blot.

Monoclonal Antibodies Against Chk2 (Clone 4B8)

Mouse monoclonal antibody (clone 4B8) against the human Serine/threonine-protein kinase Chk2. This antibody has been tested for use in immunoprecipitation and western blot.

Monoclonal Antibodies Against Mtpap (Clone 1D3)

Mouse monoclonal antibody against the human Poly (A) RNA polymerase, mitochondrial (mtPAP). This antibody has been tested for use in immunocytochemistry/immunofluorescence, immunoprecipitation, and western blot.

Monoclonal Antibody Against mtPAP (Clone 3D2)

Mouse monoclonal antibody against the human Poly (A) RNA polymerase, mitochondrial (mtPAP). This antibody has been tested for use in immunocytochemistry/immunofluorescence, immunoprecipitation, and western blot. .

  • Go to Page: