Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Agriculture & Animal Science > Animal Science

Categories

[Search within category]

Immunogenic Composition to Prevent Francisella Infections in Fish

Researchers from the University of California, Davis are part of a multi-institution research team that has developed a vaccine with proven efficacy in preventing Francisella infections in fish.

Compositions And Methods For Allelic Gene Drive Systems And Lethal Mosaicism

Efficient super-Mendelian inheritance of transgenic insertional elements has been demonstrated in flies, mosquitoes, yeast, and mice. While numerous potentially impactful applications of such so-called gene-drive systems have been proposed they are currently limited to copying relatively large DNA cargo sequences (~1-10 Kb). Many desired genetic traits (e.g., drought tolerance in plants, crop yield, pest-resistance, or insecticide sensitivity), however, result from allelic variants altering only one or a few base pairs. An efficient system for super-Mendelian inheritance of such subtle genetic variants would accelerate a wide array of efforts to disseminate favorable traits throughout populations, or to assemble complex genotypes consisting of point-mutant alleles in combination with insertional transgenes for a multitude of research and applied purposes.

Predictive Controller that Optimizes Energy and Water Used to Cool Livestock

Researchers at the University of California, Davis have developed a controller that applies environmental data to optimizing operations of livestock cooling equipment.

Methods for Producing Cultured Meat that has Heterogeneous Composition

UCLA researchers in the Departments of Integrative Biology and Physiology and Molecular, Cellular, and Developmental Biology have developed a novel method for the production of marbled, cultured meat with desirable texture and flavor.

Single Conjugative Vector for Genome Editing by RNA-guided Transposition

The inventors have constructed conjugative plasmids for intra- and inter-species delivery and expression of RNA-guided CRISPR-Cas transposases for organism- and site-specific genome editing by targeted transposon insertion. This invention enables integration of large, customizable DNA segments (encoded within a transposon) into prokaryotic genomes at specific locations and with low rates of off-target integration.

A Wearable Platform for In-Situ Analysis of Hormones

UCLA researchers in the Department of Electrical and Computer Engineering have developed a highly sensitive, wearable hormone monitoring platform.

Improved Cas12a Proteins for Accurate and Efficient Genome Editing

Mutated versions of Cas12a that remove its non-specific ssDNA cleavage activity without affecting site-specific double-stranded DNA cutting activity. These mutant proteins, in which a short amino acid sequence is deleted or changed, provide improved genome editing tools that will avoid potential off-target editing due to random ssDNA nicking.

Method To Implement A Crispr-Cas9 Copycat Gene Drive In Rodents

Currently, alleles at multiple loci in the mouse genome must be combined by Mendelian genetics in crosses of animals to one another to produce a desired compound mutant genotype. For example, to combine homozygous mutations at two loci, animals that are heterozygous for each gene must be produced by breeding, and these are subsequently crossed to one another. Since the frequency of homozygosity for each allele is 1:4 the frequency of homozygosity for both genes is 1:16. Since the average litter of mice is approximately 10 pups, and the generation time from conception to reproductive age is about 3 months, this requires a substantial number of animals and time. With the addition of each new locus (three, four, etc), the cost measured in animals, time, and money increases exponentially. These factors increase substantially more if two or more loci are genetically linked, which requires rare recombination events to combine engineered alleles on the same chromosome. The CRISPR-Cas9 gene drive system stands to revolutionize rodent breeding. If each desired allele is encoded as a gene drive element that contains an sgRNA designed to target the same genomic location in the wild type homologous chromosome, each locus will be “driven” to homozygosity in the presence of Cas9. Therefore, in order to combine three alleles, for example, a mouse with one gene drive element (A) would be crossed to a mouse that encodes Cas9. Offspring of this cross would then be crossed to mice carrying gene drive element B, and these offspring would be crossed to mice carrying gene drive element C. In the presence of Cas9 at each generation, these gene drive elements at three distinct loci will be converted to homozygosity such that 50% of offspring, those that inherit Cas9, will be triple homozygous after three generations, even if they are genetically linked loci. A CRISPR-Cas9 mediated gene drive leverages the native cellular mechanism of homology directed repair to copy a desired allele from one chromosome to another. This process can convert a heterozygous genotype to homozygosity in a single generation. While CRISPR-Cas9 gene drives have been implemented in two species of insects, flies and mosquitos, it has not been reported in any non-insect animal species. 

DNA Methylation: A New Method for the Quantitative Predictor Of Age In Dogs

The ability to properly estimate the age of dogs would be quite useful in a variety of ways. For example, proper age estimation is important because age often plays a significant role when making medical decisions for pets. Currently, the accepted method to estimate age in dogs is based on the quality of teeth as well as ocular features. Estimating age based on tooth-wear (the commonly used metric in shelters) is very inaccurate after the teeth have fully erupted, generally by 6-7 months of age in dogs. Unfortunately, these methods have an accuracy of ~50% at best for domesticated pets and is error-prone for dogs between 2-8 years, encompassing a large portion of a dog’s adult life. Thus, shelters commonly underestimate the ages of these dogs to increase the likelihood of dogs being adopted, as people generally have a preference for younger pets. 

Targeted Ionophore-Based Metal Supplementation

Metal deficiency is implicated in a variety of genetic, neurological, cardiovascular, and metabolic diseases. Current approaches for addressing metal deficiency rely on generic metal ion supplementation, which can potentially lead to detrimental off-target metal accumulation in unwanted tissues and subsequently trigger oxidative stress and damage cascades. The inventors have developed a new modular platform for delivering metal ions in a tissue-specific manner and demonstrate liver-targeted copper supplementation as a proof of concept of this strategy. Specifically, the inventors designed and synthesized a N-acetylgalactosamine-functionalized ionophore, Gal-Cu(gtsm), to serve as a copper-carrying “Trojan Horse” that targets liver-localized asialoglycoprotein receptors (ASGPRs) and releases copper only after being taken up by cells, where the reducing intracellular environment triggers copper release from the ionophore. The inventors utilized a combination of bioluminescence imaging and inductively-coupled plasma mass spectrometry assays to establish ASGPR-dependent copper accumulation with this reagent in both liver cell culture and mouse models with minimal toxicity. The modular nature of this synthetic approach presages that this platform can be expanded to deliver a broader range of metals to specific cells, tissues, and organs in a more directed manner to treat metal deficiency in disease. This patent broadly covers directed metal delivery to select organs, tissues, and organelles.

Phenotypic Age And DNA Methylation Based Biomarkers For Life Expectancy And Morbidity

UCLA researchers in the Departments of Human Genetics and Biostatistics have combined phenotypic age and DNA methylation patterns to developed a novel biomarker for biological age.

Composition Of Matter And Method For Leptospirosis Vaccine

Leptospirosis is one of the most widespread diseases estimated to infect up to 7-10 million people per year worldwide (2014) that can be transmitted from animals to humans. The most common transmission is via the urine of rodents or domestic animals that contaminates water or soil. Unfortunately, it can cause severe infection and currently there is not an efficient vaccine present to combat this disease. The disease is caused by Leptospira, a genus of the spirochaete bacteria of which there are ~13 pathogenic species that effect humans. The signs and symptoms of the disease are quite variable and can range from mild headaches, muscle pains, and fevers to the more severe form which causes bleeding from the lungs.

Genetic Test for Equine Immune-Mediated Myositis

Researchers at the University of California, Davis and Michigan State University have developed a genetic test to diagnose immune-mediate myositis in American Quarter Horses and related horse breeds.

Label Free Assessment Of Embryo Vitality

Researchers at UC Irvine developed an independent non-invasive method to distinguish between healthy and unhealthy embryos.

Enhanced Cell/Bead Encapsulation Via Acoustic Focusing

The invention consists of a multi-channel, droplet-generating microfluidic device with a strategically placed feature.The feature vibrates in order to counteract particle-trapping micro-vortices formed within the device.Counteracting these vortices allows for single particle encapsulation in the droplets formed by the device and thereby makes this technology a good candidate for use in single cell diagnostics and drug delivery systems.

Production of Glycolipid PEFAs from Yeasts

Method of using basidiomycetous yeasts to convert carbohydrates to glycolipid biosurfactants

A Micro/Nanobubble Oxygenated Solutions for Wound Healing and Tissue Preservation

Soft-tissue injuries and organ transplantation are common in modern combat scenarios. Organs and tissues harvested for transplantation need to be preserved during transport, which can be very difficult. Micro and nanobubbles (MNBs) offer a new technology that could supply oxygenation to such tissues prior to transplantation, thus affording better recovery and survival of patients. Described here is a novel device capable of producing MNB solutions that can be used to preserve viability and function of such organs/tissue. Additionally, these solutions may be used with negative pressure wound therapy to heal soft-tissue wounds.

Novel Molluscicide

  Background: Slugs and snails are among the most problematic invasive agricultural and horticultural pests. They cause crop loss, reduce crop yield and quality, cause product shipment rejection, and transmit plant and human pathogens. The most commonly used chemical molluscicides are toxic to pets and other organisms. These chemical pesticides are also harmful to the environment, are not cost effective, and with variable effficacy that is highly influenced by environmental conditions such as moisture.   Brief Description: UCR researchers have developed a novel potential biopesticide that targets slugs and snails using the recently discovered US strain of the nematode species Phasmarhabditis hermaphrodita. The European strain of this nematode (Nemaslug ®) is being used to successfully manage slugs and snails in Europe. Recent surveys show that consumers in the US are willing to pay more for a more effective and environmentally safe pest management alternative for these invasive gastropods. Phasmarhabditis hermaphrodita (singly or in combination with P. californica or P. papillosa) can be used effectively to manage slug and snail infestations, notably European brown garden snail (Cornu aspersum), Giant African land snail (Lissachatina fulica), gray field slug (Deroceras reticulatum) and greenhouse slug (Lehmannia valentiana).  

New Effective Low-Cost Vaccines

Enteric disease and respiratory diseases are major problems worldwide which greatly impact human health, as well as animal health. Current vaccine approaches are limited by numerous factors, including production costs, efficacy, safety, requirement of adjuvants, and storage conditions. 

Monoclonal Antibody Against PNPase (Clone 4C11)

Mouse monoclonal antibody against the human mitochondrial polyribonucleotide nucleotidyltransferase 1 (PNPase). This antibody has been tested for use in immunocytochemistry/immunofluorescence, immunoprecipitation, and western blot.

Development Of Biodegradable Bait Station For Liquid Ant Bait

Background: Current bait station designs and other pest control tools are not very ideal nor advanced – they leak, become excessively hydrated or dehydrated, and need frequent maintenance. The global pest control services market is expected to grow annually at 5.3% and the industry is always looking for unique ways to conquer them.  Brief Description: UCR Researchers have developed a novel, protected bait station that has controlled liquid bait release. The compact design contains a sugary, insecticide liquid bait that diffuses through an absorbent polymer or gel matrix. Only ants have access to the station and once an ant consumes the bait, the station biodegrades thus eliminating bait station cleanup.

Monoclonal Antibody against ATR-IP (Clone 11)

Mouse monoclonal antibody against the human ATR-interacting protein (ATR-IP). This antibody has been tested for use in immunocytochemistry/immunofluorescence, immunoprecipitation, and western blot.

Monoclonal Antibody Against CEP164 (Clone 13)

Mouse monoclonal antibody against the human centrosomal protein 164kDa (Cep164). This antibody binds to the phosphorylation site of Cep164 and has been tested for use in immunocytochemistry/immunofluorescence, immunoprecipitation, and western blot.

Monoclonal Antibody Against CEP164 (Clone 17)

Mouse monoclonal antibody against the human centrosomal protein 164kDa (Cep164). This antibody binds to the phosphorylation site of Cep164 and has been tested for use in immunoprecipitation and western blot.

Monoclonal Antibodies Against Chk2 (Clone 4B8)

Mouse monoclonal antibody (clone 4B8) against the human Serine/threonine-protein kinase Chk2. This antibody has been tested for use in immunoprecipitation and western blot.

  • Go to Page: