Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Engineering > Other

Categories

[Search within category]

Low Energy and Noise Sub-Sampling Phase-Locked Loop

Phase locked loops are widely employed in radio, telecommunications, computers and other electronic applications. They can be used to demodulate a signal, recover a signal from a noisy communication channel, generate a stable frequency at multiples of an input frequency, or distribute precisely timed clock pulses in digital logic circuits such as microprocessors. Researchers at the University of California, Davis have invented a novel, sub-sampling phase-locked, loop (SSPLL) that uses a sub-sampling lock detector (SSLD) to monitor the harmonic selected by the SSPLL. This technology requires lower energy consumption and reduces signal noise.

Dual-Shell Fused Quartz Resonators and Method of Fabrication

UCI researchers developed a sturdy architecture and straightforward fabrication procedure for the core sensing element in microscale gyroscopes for timing and inertial navigation applications.

Neural Modulation Of Autonomic Nervous System To Alter Memory And Plasticity Of The Autonomic Network

Researchers at UCLA from the Departments of Medicine and Bioengineering have created a device that modulates the autonomic nervous system to treat heart conditions like arrhythmias.

Stream-Based Memory Access Specialization For General Purpose Processors

Researchers led by Zhengrong Wang and Tony Nowatzki from the Computer Science Department at UCLA have created a way to improve computer processing power, speed, and efficiency by optimizing how processors access memory.

Apparatus and Methods for Stimulating DNA Repair Using Red Light Therapy

Red light exposure can have phototherapeutic effects on skin cells and other biological cells and tissues affected by UV damage. However, existing methods and devices using red light in DNA phototherapy have not identified the proper duration, intensity, or delivery mechanisms for optimal DNA repair. If the radiant intensity of the red light is too low, then exposure is inadequate and the repair biomarkers are not activated. Conversely, prolonged exposure to excessive electromagnetic radiation only furthers DNA damage. Moreover, in the context of skin treatment, excessive radiant intensity can burn tissue or have carcinogenic side effects. Thus, there is a need for a device and methods of use that provide safe, effective, and targeted red light DNA phototherapy.

A Method For Universal Two-Tap Feed-Forward Equalization Using A Differential Element

A fully tunable feed-forward equalizer with simplified addition and inversion operations that use a single differential element.

Polaris: Lifestyle Guide For Diabetes

Researchers at UCI have developed a comprehensive platform, Polaris, for personalized diabetes management. By combining standard blood glucose monitoring with activity tracking, Polaris provides users with real-time suggestions that encourage treatment adherence and promote healthy behaviors to better mitigate their symptoms.

Material For Thermal Regulation

Researchers at UCI have developed a lightweight, flexible thermal material that, due to the extent that it is stretched, allows for tunable control of heat flow.

A Family Of Hybrid Boosting Voltage Converters

Many industries, such as solar cells and energy storage, will be greatly benefited by high-gain step-up/step-down converters.UCI researchers have developed a family of hybrid boosting converters (HBC) that combine a base bipolar voltage multiplier (BVM) and one of several possible inductive switching cores to address various converter functionalities.

A Family Of Two-Switch Boosting Switched-Capacitor Converters (TBSC)

Switched capacitor converters, which provide high-gain voltage conversion, have drawbacks that have limited their use to specific applications. UCI researchers have developed a family of two-switch boosting switched-capacitor converters (TBSC) that enables the use of switched-capacitor converters in low cost and small-size applications as well as on-chip integration.

A Sustainable Alternative Route to Produce Methyl Methacrylate

A sustainable alternative route to produce Methyl methacrylate (MMA) in an engineered yeast strain.

System And Method For Binaural Spatial Processing Of Audio Signals

Audio signal processing is the intentional modification of sound signals to create an auditory effect for a listener to alter the perception of the temporal, spatial, pitch and/or volume aspects of the received sound. Audio signal processing can be performed in analog and/or digital domains by audio signal processing systems. For example, analog processing techniques can use circuitry to modify the electrical signals associated with the sound, whereas digital processing techniques can include algorithms to modify the digital representation, e.g., binary code, corresponding to the electrical signals associated with the sound.  Binaural sound recordings are produced by a stereo recording of two microphones inside the ears of a human or a mannequin head. Such recordings include most cues for sound spatialization detected by humans, and thus, they are able to realistically transmit the localization of the recorded sounds, and in effect provide a three dimensional experience of the soundscape for the listener.

A Built-In Mechanism Of Gas Maintenance In Microfeatures On A Submerged Surface

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a novel superhydrophobic surface for drag reduction and anti-biofouling applications.

Vascularized Tissue Engineering

Tissue engineering and/or regenerative medicine are fields of life science employing both engineering and biological principles to create new tissues and organs and to promote the regeneration of damaged or diseased tissues and organs. Major advances and innovations are being made in the fields of tissue engineering and regenerative medicine and have a huge impact on three-dimensional bioprinting (3D bioprinting) of tissues and organs. 3D bioprinting holds great promise for artificial tissue and organ bioprinting, thereby revolutionizing the field of regenerative medicine. One of the main roadblocks of 3D bioprinting tissues is the lack of efficient techniques to generated vascularized structures. This is critical for grafting applications as limited supply of nutrients and oxygen resulting in premature death of cells.

Energy Radiator Using Strain-Mediated Spin Torque Nano-Oscillator (S-STNO)

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed an energy radiator based on a spin torque nano-oscillator that does not require the application of an external field.

Massively Parallel High Throughput Single Cell Electroporation (MSEP)

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a novel massively parallel, single cell electroporation platform (MSEP) that is high throughput, efficient, and maintains cell viability.

A Method For Digital Pathology Using Augmented Reality

UCLA researchers in the Departments of Electrical Engineering and Computer Engineering have developed a novel method for automated image analysis of digital pathology slides.

Anti-Fouling And Self-Cleaning Electrically Conducting Low-Pressure Membranes For Water Treatment

Researchers in the UCLA Department of Civil and Environmental Engineering have developed anti-fouling and self-cleaning membranes for use in municipal and industrial wastewater treatment, with particular applications for anaerobic membrane bioreactors.

Selective Deposition Of Diamond In Thermal Vias

UCLA researchers in the Department of Materials Science & Engineering have developed a new method of diamond deposition in integrated circuit vias for thermal dissipation.

Self-Locking Optoelectronic Tweezer And Its Fabrication

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a novel self-locking optoelectronic tweezer (SLOT) for single cell manipulation in conductive buffer over large areas.

An Electrochemical CMOS Biosensor Array For Point-Of-Care Applications

Point-of-care (POC) testing is essential to halt the spread of deadly infectious diseases (e.g., Ebola, Zika, etc.) and is needed for rapid and accurate screening both in and outside of clinical settings. Label-free bioassays are desirable for POC testing as they have fewer reagents and assay steps resulting in lower cost and ease of use.   Biosensors based on electrochemical impedance spectroscopy (EIS), an ultra-sensitive, label-free sensing technique, are a promising technology for precise and rapid disease diagnosis at the point-of-care. However, EIS usually requires mixers and lock-in detection to measure both the magnitude and phase of the complex impedance.

Multimodal food journaling

Researchers at UCI have developed a hands-free, unobtrusive smartphone-based application for automatic food journaling. The app, which operates via voice command, is interactive and highly engaging thereby encouraging long-term user participation.  

Textured Surface Design for Use in Construction

Researchers at the University of California, (UC) Davis have developed a textured surface design that can improve the friction coefficient of soil-structure interfaces.

Secure Advanced Monitoring Systems

Maintaining secure networks is critical for large and high-value institutions, but providing technical staff with remote direct access to sensitive systems and real-time operational data can be vital to protecting value. For example, UC San Diego maintains highly-secure networks, yet there is a need to provide monitoring for freezer systems that contain priceless samples and materials that are often irreplaceable

Stereo Image Acquisition By Lens Translation

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a novel single-objective lens stereo imaging setup for endoscopic applications.

  • Go to Page: