Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Engineering > Other

Categories

[Search within category]

Ultra-Durable Concrete with Self-Sensing Properties

Concrete is a major material component for transportation, energy, water, and building infrastructure systems. UCI researchers have developed a new class of concrete materials with extraordinarily high damage tolerance and improved properties for long-term health monitoring.

Fabrication Method for Side Viewing Miniature Optical Elements with Free-Form Surface Geometry

Researchers at the University of California, Davis have developed a fabrication method for free-form reflective side viewing miniature optical elements to focus and reflect light with minimal chromatic aberrations.

Methods and System for Large-Scale Dream Data in Immersive Multisensory Environment: Acquisition, Analysis, Modeling and Interpretation & Applications

UCLA researchers in the Department of Electrical Engineering have developed the Dream Brain System, an immersive Virtual Reality platform that collects dream data for therapeutic, scientific and experimental use. By capturing relevant dream data through multimodal signals recollected by the user, the Dream Brain System greatly advances conventional dream reporting techniques by providing effective dream recollection and interpretation.

Multiple-Input Multiple-Output (MIMO) Communication System Using Reconfigurable Antennas

Multiple-Input Multiple-Output (MIMO) communication systems, which increase communication speed and signal quality using multi-path propagation, have become an essential part of modern wireless communication such as Wi-Fi and 4G mobile internet connectivity. UCI inventors have developed a wireless communication system architecture that, by using reconfigurable antennas, improves the data throughput capacity and lowers implementation cost and complexity for MIMO communication systems.

High-Throughput Quantification of Nanoparticle Degradation using Computational Microscopy and its Application to Drug Delivery Nanocapsules

UCLA researchers in the Department of Bioengineering have developed a high-throughput imaging technique that monitors the degradation of nanoparticles in real time.

Graphene-Polymer Nanocomposite Incorporating Chemically Doped Graphene-Polymer Heterostructure for Flexible and Transparent Conductive Films

UCLA researchers in the Department of Electrical Engineering have invented a novel graphene-polymer nanocomposite material for flexible transparent conductive electrode (TCE) applications.

Plasmonic Nanoparticle Embedded PDMS Micropillar Array and Fabrication Approaches for Large Area Cell Force Sensing

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a novel cell force sensor platform with high accuracy over large areas.

On-Chip Calibration And Control Of Optical Phased Arrays

Optimized on-chip control architecture and optimized phase shifter tuning strategy that scales to extremely large channel counts with significantly reduced on-chip footprint.

Half-Virtual-Half-Physical Microactuator

Researchers at the University of California, Davis have developed a half-virtual-half-physical microactuator that utilizes a combination of computational models and microelectromechanical systems for use in medical devices and mechanical systems.

Use of Augmented Reality for Enhanced & Efficient Communication Technologies

A communication interaction paradigm based on augmented reality that enables a remote collaborator to control his/her viewpoint onto a remote scene and communication information with visual references such as identifying objects, locations, directions, spatial instructions, etc.

Single-Pixel Optical Technologies For Instantly Quantifying Multicellular Response Profiles

UCLA researchers in the Department of Mechanical & Aerospace Engineering and the Department of Pathology & Lab Medicine have proposed a new platform technology to actuate and sense force propagation in real-time for large sheets of cells.

An MR-Compatible System for Motion Emulation

Researchers at UCLA from the Departments of Mechanical Engineering and Radiological Sciences have developed a magnetic resonance (MR) compatible device that can emulate respiratory motion.

Composite Foam

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a novel composite foam for impact applications.

High Mobility Organic Semiconductors

Brief description not available

Robust Mesoporous Nife-Based Catalysts For Energy Applications

UCLA researchers in the Department of Chemistry and Biochemistry have used selective dealloying method to produce novel high-performance, robust, and ultrafine mesoporous NiFeMn-based metal/metal oxide composite oxygen-evolving catalysts.

Improved Performance of III-Nitride Photonic Devices

Use of uniaxial strain to improve performance in optoelectronic devices.

MEM Microtabs for Aerodynamic Load Control

Researchers at the University of California, Davis have developed micro-electro-mechanical (MEM) translational microtabs for enhancing and controlling aerodynamic loading of lifting surfaces.

Device for Manufacturing Intravascular Probes

A means of precisely positioning and joining two cylindrical bodies used in the construction of side-viewing rotational endoscopic imaging probes.

Lipoplex-Mediated Efficient Single-Cell Transfection Via Droplet Microfluidics

The invention is an on-chip, droplet based single-cell transfection platform providing higher efficiency and consistency compared to conventional methods. Novel techniques following cell encapsulation yields uniform lipoplex formation, which increases the transfection accuracy. The invention solves the dilemma of the trade-off between efficiency and cell viability, and offers a safe, cell friendly and high transfection solution that is crucial for applications like gene therapy, cancer treatment and regenerative medicine.

Electrode Agnostic, Supply Variant Stimulation Engine For Implantable Neural Stimulation

UCLA researchers in the Department of Electrical Engineering have invented an innovative universal agnostic electrode for implantable neural stimulation and sensing.

Load Adaptive, Reconfigurable Active Rectifier for Multiple Input Multple Output (MIMO) Implant Power Management

UCLA researchers in the Department of Electrical Engineering have invented a novel full-fledged implant power management unit, which is highly programmable and can process multiple input power deliveries on-chip.

A High Dynamic-Range Sensing Front-End For Neural Signal Recording Systems

UCLA researchers in the Department of Electrical Engineering have invented a novel neural recording chopper amplifier for neuromodulation systems that can simultaneously record and stimulate.

Abrasive Jet Cutting Cartridges

UCLA researchers in the Department of Physics have proposed the use of solid rocket motors in abrasive jet machining.

Integrated Vacuum Pumping Aperture

UCLA researchers in the Department of Physics have developed an integratable aperture component for differential pumping in vacuum systems.

Accelerating palladium nanowire hydrogen sensors using engineered nanofiltration layers

Researchers at UCI have developed a method for enhancing existing hydrogen gas sensors, leading to as much as a 20-fold improvement in sensor response and recovery times.

  • Go to Page: