Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Transportation > Automotive

Categories

[Search within category]

Anticipatory Lane Change Warning Using Dsrc

Brief description not available

Systems and Methods for Scaling Electromagnetic Apertures, Single Mode Lasers, and Open Wave Systems

The inventors have developed a scalable laser aperture that emits light perpendicular to the surface. The aperture can, in principal, scale to arbitrarily large sizes, offering a universal architecture for systems in need of small, intermediate, or high power. The technology is based on photonic crystal apertures, nanostructured apertures that exhibit a quasi-linear dispersion at the center of the Brillouin zone together with a mode-dependent loss controlled by the cavity boundaries, modes, and crystal truncation. Open Dirac cavities protect the fundamental mode and couple higher order modes to lossy bands of the photonic structure. The technology was developed with an open-Dirac electromagnetic aperture, known as a Berkeley Surface Emitting Laser (BKSEL).  The inventors demonstrate a subtle cavity-mode-dependent scaling of losses. For cavities with a quadratic dispersion, detuned from the Dirac singularity, the complex frequencies converge towards each other based on cavity size. While the convergence of the real parts of cavity modes towards each other is delayed, going quickly to zero, the normalized complex free-spectral range converge towards a constant solely governed by the loss rate of Bloch bands. The inventors show that this unique scaling of the complex frequency of cavity modes in open-Dirac electromagnetic apertures guarantees single-mode operation of large cavities. The technology demonstrates scaled up single-mode lasing, and confirmed from far-field measurements. By eliminating limits on electromagnetic aperture size, the technology will enable groundbreaking applications for devices of all sizes, operating at any power level. BACKGROUND Single aperture cavities are bounded by higher order transverse modes, fundamentally limiting the power emitted by single-mode lasers, as well as the brightness of quantum light sources. Electromagnetic apertures support cavity modes that rapidly become arbitrarily close with the size of the aperture. The free-spectral range of existing electromagnetic apertures goes to zero when the size of the aperture increases. As a result, scale-invariant apertures or lasers has remained elusive until now.  Surface-emitting lasers have advantages in scalability over commercially widespread vertical-cavity surface-emitting lasers (VCSELs). When a photonic crystal is truncated to a finite cavity, the continuous bands break up into discrete cavity modes. These higher order modes compete with the fundamental lasing mode and the device becomes more susceptible to multimode lasing response as the cavity size increases. 

Porous Silicon Nanosphere Battery

Brief description not available

Multimodal Coatings For Heat And Fire Resistance

Brief description not available

Multi-Agent Navigation And Communication Systems

The field of autonomous transportation is rapidly evolving to operate in diverse settings and conditions. However, as the number of autonomous vehicles on the road increases the complexity of the computations needed to safely operate all of the autonomous vehicles grows rapidly. across multiple vehicles, this creates a very large volume of computations that must be performed very quickly (e.g., in real or near-real time).   Thus, treating each autonomous vehicle as an independent entity may result in inefficient use of computing resources, as many redundant data collections and computations may be performed (e.g., two vehicles in close proximity may be performing computations related to the same detected object). To address this issue, researches at UC Berkeley proposed algorithms for the management and exchange of shared information across nearby and distant vehicles.According to the proposed arrangement, autonomous vehicles may share data collected by their respective sensor systems with other autonomous vehicles and adjust their operations accordingly in a manner that is more computationally efficient. This can not only increase safety but at the same time reduce computational load required by each individual vehicle.

Temporal And Spectral Dynamic Sonar System For Autonomous Vehicles

The field of autonomous transportation is rapidly evolving to operate in diverse settings and conditions.  Critical to the performance of autonomous vehicles is the ability to detect other objects in the autonomous vehicle’s vicinity and adjust accordingly. To do so, many autonomous vehicles utilize a variety of sensors, including sonar. Although these sensor systems have been shown to improve the safety of autonomous vehicles by reducing collisions, the sensor systems tend to be computationally inefficient.  For instance, the sensor systems may generate large volumes of data that must be processed quickly (e.g., in real or near-real time).  The performance of excessive computations may delay the identification and deployment of necessary resources and actions and/or increase the cost of hardware on the vehicle making it less financially appealing to the consumer. Researches at UC Berkeley proposed algorithms for temporally and spectrally adaptive sonar systems for autonomous vehicles. These allow utilization of existing sonar system in an adaptive manner and in interface with existence hardware/software employed on autonomous vehicles. 

Embedded Power Amplifier

Researchers at the University of California, Davis have developed an amplifier technology that boosts power output in order to improve data transmission speeds for high-frequency communications.

Design For Nesting Height Adjustable Workbenches

Need to transport sturdy adjustable workbenches for use at sea or other temporary work spaces that need anchoring to walls or floors and you can't find a commercially available source?

A Phase-Changing Polymer Film for Broadband Smart Windows Applications

UCLA researchers in the Department of Materials Science and Engineering have developed an energy efficient smart window coating with wide light bandwidth and long cycle lifetimes.

Simple Low-Cost Battery Electrode Alternative

Brief description not available

Nanoparticles-Enabled Casting of Bulk Ultrafine Grained/Nanocrystalline Metals

UCLA researchers in the Department of Mechanical and Aerospace engineering have fabricated bulk, thermally stable ultrafine grained/nanocrystalline metals using conventional casting techniques.

  • Go to Page: