Browse Category: Transportation > Aerospace

[Search within category]

Improved Optical Atomic Clock In The Telecom Wavelength Range

Optical atomic clocks have taken a giant leap in recent years, with several experiments reaching uncertainties at the 10−18 level. The development of synchronized clock networks and transportable clocks that operate in extreme and distant environments would allow clocks based on different atomic standards or placed in separate locations to be compared. Such networks would enable relativistic geodesy, tests of fundamental physics, dark matter searches, and more. However, the leading neutral-atom optical clocks operate on wavelengths of 698 nm (Sr) and 578 nm (Yb). Light at these wavelengths is strongly attenuated in optical fibers, posing a challenge to long-distance time transfer. Those wavelengths are also inconvenient for constructing the ultrastable lasers that are an essential component of optical clocks. To address this problem, UC Berkeley researchers have developed a new, laser-cooled neutral atom optical atomic clock that operates in the telecommunication wavelength band. The leveraged atomic transitions are narrow and exhibit much smaller black body radiation shifts than those in alkaline earth atoms, as well as small quadratic Zeeman shifts. Furthermore, the transition wavelengths are in the low-loss S, C, and L-bands of fiber-optic telecommunication standards, allowing the clocks to be integrated with robust laser technology and optical amplifiers. Additionally, the researchers have identified magic trapping wavelengths via extensive studies and have proposed approaches to overcome magnetic dipole-dipole interactions. Together, these features support the development of fiber-linked terrestrial clock networks over continental distances.

Additive Manufacturing (3-D Printing) Of Standardized 5xxx Series Aluminum

A technology utilizing additive manufacturing (3D-Printing) processes and systems for efficient deposition of standardized aluminum 5xxx series, mitigating defects such as cracks and pores.

Computation Method For 3D Point-Cloud Holography

 The dynamic patterning of 3D optical point clouds has emerged as a key enabling technology in volumetric processing across a number of applications. In the context of biological microscopy, 3D point cloud patterning is employed for non-invasive all-optical interfacing with cell ensembles. In augmented and virtual reality (AR/VR), near-eye display systems can incorporate virtual 3D point cloud-based objects into real-world scenes, and in the realm of material processing, point cloud patterning can be mobilized for 3D nanofabrication via multiphoton or ultraviolet lithography. Volumetric point cloud patterning with spatial light modulators (SLMs) is therefore widely employed across these and other fields. However, existing hologram computation methods, such as iterative, look-up table-based and deep learning approaches, remain exceedingly slow and/or burdensome. Many require hardware-intensive resources and sacrifices to volume quality.To address this problem, UC Berkeley researchers have developed a new, non-iterative point cloud holography algorithm that employs fast deterministic calculations. Compared against existing iterative approaches, the algorithm’s relative speed advantage increases with SLM format, reaching >100,000´ for formats as low as 512x512, and optimally mobilizes time multiplexing to increase targeting throughput. 

Boost Converter Methods and System

Electric vehicle (EV) energy systems (fuel cell, battery, supercapacitor) demand power conversion technologies that can vary voltage based on the load or state of charge. This means operating in a dynamic operating environment such as supplying energy during acceleration and storing it during braking. DC-DC boost converters are a widely used component in the power systems of EVs to step the voltage between input (supply) to output (load) during charge-discharge periods. Traditional voltage/current controls for DC-DC converters utilize pulse-width modulation (PWM) controls. While PWM has worked well in the past, it lacks practical stability range under uncertain operating parameters due to its reliance on linearized models of DC-DC converter dynamics.

Multimodal Coatings For Heat And Fire Resistance

Brief description not available

Dynamic Target Ranging With Multi-Tone Continuous Wave Lidar Using Phase Algorithm

Researchers at the University of California, Irvine have developed a novel algorithm that is designed to be integrated with current multi-tone continuous wave (MTCW) lidar technology in order to enhance the capability of lidar to acquire range (distance) of fast-moving targets as well as simultaneous velocimetry measurements. This technology revolutionizes remote sensing by providing high precision, single-shot simultaneous ranging and velocimetry measurements without the need for sweeping.  

Drone Collision Recovery System

Prof. Konstantinos Karydis’ lab at the University of California, Riverside has developed a new active resilient quadrotor (ARQ), which incorporates passive springs within its frame to absorb shocks and survive collisions.  Each arm of the quadrotor is equipped with sensors to accurately and rapidly detect the location (in the drone’s frame) and intensity of a collision.  In addition, a recovery controller that enables the drone to sustain flight after collision with objects like wall, poles, or moving objects. The technology has been proven on the quadrotor however it may be applied to drones with more than four arms. Fig 1: Instances of the novel ARQ drone detecting and recovering from colllisions in (a) and (b) and from collision with a wall (c) and (d). Fig 2: shows ARQ detecting and recovering from a passive collision. (a) ARQ hovers. (b) Collision starts and the ARQ arm absorbs the shock. (c) recovery control starts and there is a body interfering with the ARQ’s flight path. (d) ARQ is stabilized and hovering again.  

Vibration Sensing and Long-Distance Sounding with THz Waves

UCLA researchers in the Department of Electrical and Computer Engineering have developed a terahertz (THz) detector that utilizes the micro-Doppler effect to detect vibrations and long-distance sounds.

Simple Low-Cost Battery Electrode Alternative

Brief description not available

Scalable Manufacturing of Copper Nanocomposites with Tunable Properties

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a cost-effective method to produce copper-based nanocomposites with excellent mechanical, electrical and thermal properties.

A Stall Prevention and Recovery System For Airplanes

   Under stall conditions, some airplane control surfaces suffer from decreased or reversed sensitivity, making it difficult for typical control schemes to recover from the stall.  UCI inventors have developed a novel roll mechanism, derived from geometric nonlinear control theory, which allows for pilot roll control and prevents unintentional roll motion resulting from the stall.

Dynamic Statistical Contingency Fuel

Airlines rely on flight dispatchers to perform the duty of fuel planning. In addition to required fuel loading categories, flight dispatchers also uplift contingency fuel to be on the aircraft to hedge against various uncertainties (e.g. weather uncertainty, traffic congestion uncertainty, air traffic control uncertainty etc.) to ensure flight safety and reduce the risk of diversions. To provide consistent and objective fuel planning, some airline Flight Planning System (FPS) provides recommended contingency fuel numbers for dispatchers based on a statistical analysis of historical fuel consumption for similar flights. This recommended contingency fuel is called statistical contingency fuel (SCF). However, due to limitations of the current SCF estimation approach, the application of SCF is limited. Researchers at the University of California, Berkeley have developed a novel methodology based on quantile regression models to overcome the limitations of the current SCF estimation approach. The proposed method takes various factors such as weather, aircraft type, airport, and historical operational conditions into account so that SCF can be estimated in a dynamic, flexible, and more accurate way. Their results have shown that dynamic SCF performs much better than the current SCF estimated by airline FPS and also more sensitive to the specific conditions faced by a given flight. SCF calculated using this novel method will be higher under adverse weather conditions, whereas the current method for determining SCF does not take these conditions into account. The result of using this novel SCF is expected to reduce fuel loading, since dispatchers typically ignore SCF based on the current method when conditions are poor, instead simply loading a very large amount of contingency fuel. By reducing fuel loading, not only would a plan be able to take off sooner, but this would also result in reduced fuel consumption as the aircraft’s weight would be reduced.

Efficient UAV Flight Mechanism with Vertical Take-Off and Landing (VTOL) Capability

Researchers at the University of California, Davis have developed a new flight mechanism that offers vertical take-off and landing (VTOL) capability and cruising speeds comparable with fixed wing unmanned aerial vehicles (UAV).

Sub-Carrier Successive-Approximation Mm-Wave Radar For High-Resolution 3D Imaging

UCLA researchers in the Department of Electrical Engineering have developed a sub-carrier successive approximation radar (SAR) system with a sufficiently high accuracy to capture three-dimensional images of objects concealed either under the clothing of a person, or within small packages. 

Orthogonal Mode Laser Gyro

Brief description not available

Evaporation-Based Method For Manufacturing And Recycling Of Metal Matrix Nanocomposites

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a new method to manufacture and recycle metal matrix nanocomposites.

Methods of Self-Calibration for Coriolis Vibratory Gyroscopes

The levels of long-term instabilities in bias and scale factor are key characteristics for the utilization of gyroscopes in many practical applications in navigation, positioning, and targeting systems. The inventors at UCI have developed two methods for gyroscope calibration: 1) Utilizing the mechanical quadrature error and 2) Utilizing the voltages of amplitude gain control (AGC) of the drive-mode. The new methods have been combined with feedback signals from a third technique, Side-Band Ratio (SBR) detection, to produce bias stability of 0.1 deg/hr after 300 seconds that is maintained for over 3 hours.

Micromachined Gyroscopes with Two Degrees of Freedom Sense-Mode Oscillator

The invention relates to the field of micromachined gyroscopes, and in particular to inertial micromachined transducers for measurement of angular rotation rate of an object. A three-degrees of freedom (DOF) MEMS inertial micromachined gyroscope with nonresonant actuation with a drive direction, sense direction and a direction perpendicular to the drive and sense directions comprises a planar substrate, a 2-DOF sense-mode oscillator coupled to the substrate operated at a flattened wide-bandwidth frequency region, and a 1-DOF drive mode oscillator coupled operated at resonance in the flattened wide-bandwidth frequency region to achieve large drive-mode amplitudes.

Synthesis Technique to Achieve High-Anisotropy FeNi

Researchers at the University of California, Davis have developed an innovative synthesis approach to achieve high anisotropy L1 FeNi by combining physical vapor deposition and a high speed rapid thermal annealing (RTA).

Supersonic Thrust Vector Control for Jet Engines Using Staggered Flaps

Researchers at the University of California, Davis have developed a novel mechanism for vectoring the thrust of supersonic, air-breathing jet engines for aircraft applications.

A Low-Profile Flow Shear Sensing Unit

UCLA researchers have developed an accurate low-profile shear sensing unit that is viable for both gas and liquid flows.

  • Go to Page: