Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Sensors & Instrumentation > Biosensors

Categories

[Search within category]

Respiratory Monitor For Asthma And Other Pulmonary Conditions

A patch sensor that is able to continuously monitor breathing rate and volume to diagnose pulmonary function and possibly predict and possibly prevent fatal asthma attacks.

Platform for predicting a compound’s cardioactivity

The invention is a platform that combines a screening system and machine learning algorithms to investigate and report the cardio-activity related information of a certain compound. Through screening cardiac tissue strips, the platform determines whether a compound is cardio-active or not, as well as the associated cardio-active mechanism based on a drug library that is automatically developed. Such information is crucial for the drug development process, especially for evidence based decisions.

Electrode Agnostic, Supply Variant Stimulation Engine For Implantable Neural Stimulation

UCLA researchers in the Department of Electrical Engineering have invented an innovative universal agnostic electrode for implantable neural stimulation and sensing.

A High Dynamic-Range Sensing Front-End For Neural Signal Recording Systems

UCLA researchers in the Department of Electrical Engineering have invented a novel neural recording chopper amplifier for neuromodulation systems that can simultaneously record and stimulate.

A Wearable Multimodal Biosensing And Eye-Tracking System

The current usage of bio-sensors is pretty much restricted to laboratory environments for experimental data collection due to the state of art of the technology. There is no robust yet comfortable system that could be used for data collection in mobile settings or has applications in real-world environments. Traditional bio-sensing systems are costly, bulky and not designed for comfort or ease-of-use, so they are not practical for real-world studies. Additionally, the bio-sensors have to be usually assembled together, which requires more effort in time synchronization and calibration between them.

Wireless In Situ Sensors in Stents for the Treatment and Monitoring of Chronic Obstructive Lung Disease (COPD)

UCLA researchers in the Department of Electrical Engineering have developed a novel wireless sensor for external and internal biosensing applications.

Drift-Free, Self-Calibrated Interrogation Method For Electrochemical Sensors Based On Electron Transfer Kinetics

A new method using chronoamperometry in place of voltammetry to obtain data from electrochemical sensors, including electrochemical biosensors.

Aptamer functionalized shrink-induced high surface area electrochemical sensors

A low-cost method of manufacturing a, rough high surface area electrodes with a dissolvable polymer coating to improve surface wettability and electrochemical sensing.

Multi-Modal Depth-Resolved Tissue Status Monitor

UCLA researchers in the Department of Bioengineering have invented a novel multi-modal depth-resolved tissue status monitor.

Holographic Opto-Fluidic Microscopy

UCLA researchers in the Department of Electrical Engineering have developed a system for holographic opto-fluidic microscopy.

Quantification Of Plant Chlorophyll Content Using Google Glass

UCLA researchers in the Department of Electrical Engineering have invented a novel device that can quantify chlorophyll concentration in plants using a custom-designed Google Glass app.

High-Throughput And Label-Free Single Nanoparticle Sizing Based On Time-Resolved On-Chip Microscopy

UCLA researchers in the Department of Electrical Engineering have developed a rapid, low-cost, and label-free methodology for nanoparticle sizing.

Rapid, Portable And Cost-Effective Yeast Cell Viability And Concentration Analysis Using Lensfree On-Chip Microscopy And Machine Learning

UCLA researchers in the Department of Electrical Engineering have developed a new portable device to rapidly measure yeast cell viability and concentration using a lab-on-chip design.

Passthought Authentication With In-Ear EEG

It is well appreciated by experts and end-users alike that strong authentication is critical to cybersecurity and privacy, now and into the future. The currently dominant method of authentication in consumer applications, single-factor authentication using passwords or other user-chosen secrets, faces many challenges. Major industry players such as Google and Facebook have strongly encouraged their users to adopt two-factor authentication (2FA). However, submitting two different authenticators in two separate steps has frustrated wide adoption due to its additional hassle to users. In previous work, ”one-step two-factor authentication” has been proposed as a new approach to authentication that can provide the security benefits of two factor authentication without incurring the hassle of two-step verification. Researchers at UC Berkeley have created a one step, three-factor authentication. In computer security, authenticators are classified into three types: knowledge factors (e.g., passwords and PINs), possession factors (e.g., physical tokens, ATM cards), and inherence factors (e.g., fingerprints and other biometrics). By taking advantage of a physical token in the form of personalized earpieces, the uniqueness of an individual’s brainwaves, and a choice of mental task to use as one’s passthoughts, they have achieved all three factors of authentication in a single step by the user.  

Digital Droplet Microflowmetry Enabled By Interfacial Instability

Researchers at the University of California, Davis have developed a non-thermal, digital microfluidic flowmeter with the ability to measure ultralow flow rates.

PCR-Free Ultrasensitive Hiv And Other Virus Quantitation Device

UCLA researchers in the Department of Electrical Engineering & Bioengineering and Department of Medicine have developed a novel integrated device that can perform label-free ultrasensitive measurements of viruses in fluids (i.e. HIV in blood), obviating PCR and bulky, costly infrastructure required for current generation clinical assays.

Drop-Carrier Particles For Digital Assays

UCLA researchers in the Department of Bioengineering have developed a novel drop-carrier particle for single cell or single molecule assays.

Trademark: Flexible Fan Out Wafer Processing And Structure: Flextrate

UCLA researchers in the Department of Electrical Engineering have invented a novel biocompatible flexible device fabrication method using fan-out wafer level processing (FOWLP).

Microchambers With Solid-State Phosphorescent Sensor For Measuring Single Mitochondrial Respiration

The invention is a miniaturized device that assays the respiration of a single mitochondrion. Through a novel approach for measuring oxygen consumption rate, the device provides information on cell and tissue mitochondrial functional. This data is relevant for understanding human conditions associated with mitochondrial dysfunction, such as Alzheimer’s Disease and cancer.

Transabdominal Fetal Blood Oximetry

Researchers at the University of California, Davis have developed a method and apparatus for clinical-grade transabdominal fetal blood oximetry.

Genetically Encoded Fluorescent Sensors for Probing the Action of G-Protein Coupled Receptors (GPCRs)

Researchers at the University of California, Davis have developed a genetically encoded fluorescent sensor toolbox for the probing of G-protein coupled receptors.

Multi-Modal Depth-Resolved Tissue Status And Contact Pressure Monitor

Researchers in the UCLA Bioengineering Department have developed a device to detect changes in blood oxygenation of neonate intestines to allow for diagnosis of necrotizing enterocolitis.

High Performance and Flexible Chemical And Bio Sensors Using Metal Oxide Semiconductors

UCLA researchers in the Department of Materials Science and Engineering have developed a simple method producing thin, sensitive In2O3-based conformal biosensors based on field-effect transistors using facile solution-based processing for future wearable human technologies as well as non-invasive glucose testing.

Wireless Wearable Big Data Brain Machine Interface (W2b2/Wwbb)

UCLA researchers have developed a wireless wearable big data brain machine interface. This technology provides a user-friendly brain machine interface system that can monitor/record a large amount of brain activities and transfer, wirelessly, the processed/raw data to a remote mobile unit.

Enhanced Cell/Bead Encapsulation Via Acoustic Focusing

The invention consists of a multi-channel, droplet-generating microfluidic device with a strategically placed feature. The feature vibrates in order to counteract particle-trapping micro-vortices formed in the device. Counteracting these vortices allows for single particle encapsulation in the droplets formed by the device and makes this technology a good candidate for use in single cell diagnostics and drug delivery systems.

  • Go to Page: