Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Semiconductors > Other

Categories

[Search within category]

Vibration Sensing and Long-Distance Sounding with THz Waves

UCLA researchers in the Department of Electrical and Computer Engineering have developed a terahertz (THz) detector that utilizes the micro-Doppler effect to detect vibrations and long-distance sounds.

Quality Factor Enhancement For Highly-Selective Miniaturized Bandpass Filters

UCLA researchers in the Department of Electrical and Computer Engineering have developed narrowband and high-selective filters with zero-insertion loss.

Iii-N Transistor With Stepped Cap Layers

A new structure for III-N transistors that is able to maintain a high breakdown and operating voltage while improving the gain of the device.

Techniques for Creation and Insertion of Test Points for Malicious Circuitry Detection

Researchers led by Dr. Potkonjak from the UCLA Department of Computer Science have developed a technique to detect hardware Trojans in integrated circuits.

Digital Spur Cancellation Of Fractional Frequency Synthesizer

UCLA researchers in the Department of Electrical and Computer Engineering have developed a digital spur cancellation technique for frequency synthesizers used in clock synchronization.

An Improved On-Chip Crosstalk Noise Model

Researchers led by Jason Cong from the Department of Computer Science at UCLA have developed an improved on-chip crosstalk noise model to optimize integrated circuit design.

Selective Deposition Of Diamond In Thermal Vias

UCLA researchers in the Department of Materials Science & Engineering have developed a new method of diamond deposition in integrated circuit vias for thermal dissipation.

Multiple-absorbers offer increased solar conversion efficiencies for artificial photosynthesis

   Researchers at UCI have, for the first time, developed a method for modeling the efficiencies of artificial photosynthetic devices containing multiple light absorbers. As these devices more closely parallel naturally occurring photosynthesis, they offer higher performance than standard single-absorber devices.

Methods And Systems For Magnetoelectronic Elements And Arrays

UCLA researchers in the Department of Electrical Engineering have developed a magnetoelectric memory array, which uses a crossbar architecture to achieve high density.

A Read-Disturbance-Free Nonvolatile Content Adressable Memory

UCLA researchers in the Department of Electrical Engineering have developed read-disturbance-free content addressable memory (CAM) using voltage controlled magneto-electric tunnel junctions (MEJs).

Voltage-Controlled Magnetic Tunnel Junction Switch

UCLA researchers in the Department of Electrical Engineering have developed a voltage-controlled magnetic tunnel junction switch that can switch the magnetization of a magnetic bit (i.e., in a free layer) from one state to another using an applied voltage.

Body Voltage Sensing Based Short Pulse Reading Circuit For STT-RAM

UCLA researchers in the Department of Electrical & Computer Engineering have invented a novel circuit design that performs high speed and reliable data reading operations for resistive device-based memory applications.

Multiple-Bits-Per-Cell Voltage-Controlled Magnetic Memory

UCLA researchers in the Department of Electrical and Computer Engineering have developed a new random access memory read/write method that achieves new levels of speed, scalability, and memory density.

Flexible Organic Transistors with Controlled Nanomorphology

A simple strategy for controlling the nanomorphology of semiconducting polymers on surface-modified polymer dielectrics as well as a technique for fabricating flexible OFETs. 

RASP: FPGA/CPLD Technology Mapping And Synthesis Package

Researchers led by Jason Cong from the Computer Science Department at UCLA have developed a general synthesis and mapping system for SRAM-based FPGAs.

Simple and Effective Strategy for Optical Band Gap Control in Conjugated Oligomers and Polymers

Researchers have demonstrated the ability to modulate the electronic properties of a conjugated molecule via interaction with Lewis acids that bind a basic site in the molecule.

Controlling Magnetization Using Patterned Electrodes on Piezoelectrics

UCLA researchers in the Department of Materials Science and Engineering have developed a novel piezoelectric thin film that can control magnetic properties of individual magnetic islands.

A General Solution-Processable Approach To High-Quality Two-Dimensional Ink Materials For Printable High-Performance Large-Area And Low-Cost Electronics/Optoelectronics/Thermoelectrics

UCLA researchers in the Departments of Chemistry & Biochemistry and Materials Science & Engineering have developed a general and cost-effective solution-phase approach to create large-area and high-performance thin films or devices.

Anti-Ferromagnetic Magneto-Electric Spin-Orbit Read Logic

UCLA researchers in the department of Electrical Engineering have developed a novel magetoelectric device for use as a spin transistor.

Tunnel Junction Devices with Optically-Pumped III-Nitride Layers

A method of replacing standard electrical injection of the quantum wells in semiconductor devices with optically-pumping, by coupling a short-wavelength electrically pumped active region to a long-wavelength optically pumped region via a tunnel junction.

Interference Tolerant Radar System for Self-Driving Vehicles

UCLA researchers in the Department of Electrical Engineering have developed a low cost radar system that can detect up to 22 vehicles within 15 cm range. 

Epitaxial Laser Integration on Silicon Based Substrates

A low-cost, highly scalable approach to integrating a compound-semiconductor laser or light source with silicon-photonic circuitry.

Frequency Discriminator-based Phase Noise Filter (PNF) for Ultra-Clean LO/Clock

Researchers at the University of California, Davis have developed a phase noise filter (PNF) circuit with wide bandwidth and high sensitivity.

  • Go to Page: