Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Medical > Stem Cell

Categories

[Search within category]

Biomimetic Conductive Hydrogels

UCLA researchers in the Department of Bioengineering have developed a novel electrically conductive scaffold system with a hyaluronic acid (HA)-based hydrogel for biomimetic research to treat spinal cord and other central nervous system (CNS) injuries.

Development Of Organ-Preservation Solution Based On O2 Releasing Particles

UCLA researchers in the Departments of Bioengineering, Radiology, and Chemical and Biomolecular Engineering have developed a novel oxygen-generating material for promoting the viability of cells.

Novel Sources of Hematopoietic Progenitor Cells

UCLA researchers in the Department of Urology have developed a novel method of collecting hematopoietic stem cells from deceased donors that preserves the donor body and organs for further donations.

DEVICES AND METHODS FOR GENERATING OLIGODENDROCYTE PROGENITOR CELLS

The emergence of several cell based therapy candidates in the clinic is an encouraging sign for human diseases/disorders that currently have no effective small molecule or biologic based therapy. Stem cells – including adult and pluripotent subtypes – offer tremendous clinical promise for the treatment of a variety of degenerative diseases, as these cells have the capacity to self-renew indefinitely and to mature into functional cell types and thereby serve as a source of cell replacement therapies (CRTs) and pluripotent stem cells (hPSCs) are of increasing interest for the development of CRTs because of their capacity to differentiate into all cell types in an adult, for which adult tissue-specific stem cells may in some cases not even exist. One potential CRT enabled by hPSCs is oligodendrocyte progenitor cells (OPCs) for the treatment of spinal cord injury (SCI). Such hPSC-OPCs have recently advanced to a Phase II clinical trial and are even being considered for additional diseases in the central nervous system (CNS), such as multiple sclerosis (MS), or injury from radiation.   UC researchers have developed a microscale 3D culture screening and analysis methodology that is relevant to the production of several up and coming cell replacement therapy candidates for which derivation from a precursor cell type requires searching through a large in vitro design space of doses, durations, dynamics, and combinations of signaling cues over several weeks of culture, such as oligodendrocyte progenitor cells (OPCs) and midbrain dopaminergic neurons (mDA neurons) derived from human pluripotent stem cells. 

Antibody-Free Protocol For Generation Of Highly Expandable, Non-Fibroadipogenic Mesodermal Precursors from Human Pluripotent Stem Cells For Treatment

UCLA researchers in the Department of Orthopaedic Surgery have developed a novel method to generate mesodermal precursors from human pluripotent stem cells to treat chronic skeletal muscle atrophy and fibrosis.

Viral Expression Vector Targeting HIV-1

UCLA researchers from the Department of Microbiology, Immunology, & Molecular Genetics have developed a viral expression vector that combines two reagents effective against HIV-1 infection.

New Method for Generation of Human Pacemaker Cardiomyocytes

The heart consists of a multitude of diverse cardiomyocyte cell types, including atrial, ventricular and pacemaker cells, which cooperate to ensure proper cardiac function and circulation throughout the body. The rhythm of the heart beat is regulated by the sinoatrial node (SAN), functionally known as the cardiac pacemaker. Loss or dysfunction of these pacemaker cardiomyocytes leads to severe cardiac arrhythmias, syncope and/or even death. Although artificial pacemakers exist to help overcome these issues, several serious limitations and problems have emerged with this approach over the past several decades including electrode fracture or damage to insulation, infection, re-operations for battery exchange, and venous thrombosis. Moreover, size mismatch and the fact that pacemaker leads do not grow with children are a concerning problem. Thus, replacing artificial pacemakers with biological pacemakers potentially overcomes these artificial pacemaker issues including the expense and complications associated with device replacement, device or lead failure, and infection. To achieve these goals, understanding how pacemaker cardiomyocytes are generated is necessary to develop a human biological pacemaker for cardiac cellular therapies.

Human-Derived Reporter Gene for Positron Emission Tomography Imaging

UCLA researchers from the Department of Microbiology, Immunology, & Molecular Genetics have developed a novel reporter gene for positron emission tomography imaging of transplanted cells.

Development of Methods and Protocols for Use of Human Cish-/- IPSC-NK Cells for Cancer Therapy

Natural killer (NK) cells are a key component of the innate immune system and are involved in early defense against viruses and cancer cells. NK cells have the ability to lyse cells without prior sensitization  and therefore are the subject of intense interest to be potentially used as immunotherapeutic targets to treat cancer. The crucial element for using NK cells in immunotherapy is the ability to control the signaling and activation pathways. Recent work has shown that the cytokine-inducible SH2-containing protein (CIS), encoded by the Cish gene, can act as a checkpoint in NK activation by inhibiting IL-15 signaling, a major upregulator of NK cell activity. Furthermore, deletion of the Cish gene has been shown to increase the sensitivity of NK cells to IL-15, resulting in mice that are resistant to experimental metastasis.

Ocular Therapeutics Using Stem Cell Microvesicles

Researchers in the UCLA Department of Ophthalmology have invented a method of using human embryonic stem cell microvesicles (hESMVs) to induce the regenerative capacity of several tissues, in particular, the ability to induce reconstruction of diseased retinas.

Method to Direct the Reciprocal Interactions Between the Ureteric Bud and the Metanephric Mesenchyme

Researchers at UCLA have developed an approach to construct an embryonic kidney in vitro for the treatment of end stage renal disease.

A Codon-Optimized Lentiviral Vector For Stem Cell Reprogramming

UCLA researchers in the Department of Medicine and the Department of Surgery have developed a novel lentiviral vector that expresses a codon-optimized sequence of a T cell receptor (TCR) specific for the cancer-testis antigen NY-ESO-1 as well as a positron emission tomography (PET) reporter and suicide gene HSV1-sr39tk for use in adoptive T cell therapy for cancer treatment.

3D Scaffolds For Mesoderm Differentiation

Researchers led by Benjamin Wu from the Departments of Bioengineering and Pathology & Laboratory Medicine have developed an implantable scaffolding that can create hematopoietic stem cells from pluripotent stem cells in vivo.

Transient Expression Of BCL-2 To Ameliorate Cytotoxicity Of Gene Modification Reagents In Stem Cells

Researchers at the UCLA Department of Microbiology, Immunology and Molecular Genetics have developed methods for efficient gene editing in stem cells by increasing the level of apoptosis regulator BCL-2.

Ex Vivo Maintenance and Expansion Of Hematopoietic Stem Cells

Hematopoietic stem cell (HSC) transplants are used to treat patients with a broad spectrum of hematological malignancies, immune disorders and genetic blood diseases. Unfortunately, even after decades of use and research, there is a significant shortage of histocompatible HSCs available for transplants. Transplanting larger numbers of HSCs increases the likelihood and speed of successful engraftment, which can reduce the risk of complications such as anemia and infection, and more effectively treat underlying disease. The inability to efficiently maintain adult HSCs ex vivo is also a significant barrier for the wider development and implementation of gene therapies for diverse blood diseases and a major obstacle for engineering HSC derived cellular products for immunotherapy. One approach to overcome this challenge is to develop a means to maintain and expand HSCs in culture. Unfortunately, there is no well-defined reproducible means to maintain or expand HSCs. Even short culture times in optimized conditions are deleterious to HSCs. Ex vivo HSC maintenance and expansion could significantly enhance their clinical utility in a wide range of human diseases, providing a new platform for testing drugs, enabling more efficient gene editing within stem cells, and developing into a widely-used tool for the research community.

Three-Step Method For Universal Enrichment, Expansion, And Maturation Of Skeletal Muscle Cells Derived From Human Pluripotent Stem Cells

UCLA researchers have developed a novel method for enriching, expanding, and maturing populations of skeletal muscle progenitor cells (SMPCs) from human pluripotent stem cells (hPSCs).

Therapeutic Approach To Prevent Or Alleviate Drug-, Noise- And Age-Related Hearing Loss

UCLA researchers in the Department of Head and Neck Surgery have developed a novel therapeutic approach to treating hearing loss using inflammation-resolving molecules.

Lentiviral Vectors Expressing FoxP3 Or IL-10 In Hematopoietic Stem Cells To Treat Immune Deficiencies And Auto-Immune Diseases

The Kohn group at UCLA has created lentiviral vectors expressing FoxP3 or IL-10 for transduction into patient hematopoietic stem cells (HSC). Successful transplantation of autologous HSCs would allow for treatment of a number of auto-immune and auto-inflammatory diseases, while avoiding complications associated with allogenic transplants or autologous T cell therapies.

Method to Develop a Stable Pluripotent Bovine Embryonic Stem Cell Line

Researchers at the University of California, Davis have developed a method to produce stable pluripotent bovine embryonic stem cells.

Scalable Lipid Bilayer Microfluidics for High-Throughput Gene Editing

Researchers led by Paul Weiss from the Department of Chemistry and Pediatrics at UCLA have created a new microfluidic device for high-throughput gene editing of cells.

System and Methods for Efficient Collection of Single Cells and Colonies of Cells and Fast Generation of Stable Transfectants

A plate manufactured to enable samples of cells, microorganisms, proteins, DNA, biomolecules, transfectants, and other biological media to be positioned at specific sites. Some or all of the sites are built from removable material so that samples may be isolated.

A Novel Method and Protocol to Induce Pluripotent Stem Cells Toward Astrocyte Differentiation

Rett syndrome (RTT) is a devastating disease that affects 1 in every 10,000 children born in the United States, primarily females. RTT patients undergo apparently normal development until 6-18 months of age, followed by impaired motor function, stagnation and then regression of developmental skills, hypotonia, seizures and a spectrum of autistic behaviors. Rett syndrome is a rare disease that shares certain pathways with major developmental disorders such as autism and schizophrenia, increasing the potential impact. There is no cure for Rett syndrome and the animal model does not entirely recapitulate the human disease. Thus, having the possibility to screen drugs directly in human neurons is a major milestone.

Development of Human-Derived Cerebral Organoids with Network Oscillations

Historically, the understanding of the development and pathophysiology of the human brain has been studied by examination of post-mortem and diseased specimens in conjunction with non-human primates and mouse models. The understanding of complex biological mechanisms is driven by advancement of techniques and new model systems and recent advances in stem technologies have contributed to the advancement of our knowledge of human neural development. Moreover, the reprograming of human somatic cells into induced pluripotent stem cells (iPSCs) which can be redirected to a specific cell fate has led to a breakthrough in neurobiology research. These findings have led to the generation of human brain organoids from IPSCs.

The Use Of Parathyroid Gland Cells And Their Secreted Factors To Promote Islet Beta Cell Engraftments

This invention identifies a novel method to increases survival of transplanted islets in extra-hepatic sites (subcutaneous and intramuscular) through co-transplantation of pancreatic islet beta cells together with parathyroid glands (PTGs). This treatment can successfully be used for patients with type I diabetes.

Methods for Enhancing Cell Populations for Articular Cartilage Repair

Cartilage lesion treatments require expanding cells from healthy donor cartilage which have limited availability and restricted potential to produce cartilage. This invention overcomes these challenges, presenting chemical and physical methods for enhancing cell populations capable of producing neocartilage. According to a 2015 global market report, tissue engineering technologies are expected to reach over 94B USD by 2022.

  • Go to Page: