Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Medical > Screening


[Search within category]

Clinical Prognostication Test In Uveal Melanoma

Uveal melanoma commonly known as ocular or choroidal melanoma, is a rare cancer of the eye. It is an intraocular malignancy that arises from melanocytes of the choroid, ciliary body, and iris of the eye. Ocular melanoma is diagnosed in approximately 2,000-2,500 adults annually in the United States. In both the U.S. and Europe, this equates to about 5 - 7.5 cases per million people per year and, for people over 50 years old, the incidence rate increases to around 21 per million per year. While the primary tumor is highly treatable, about half of the patients will develop metastasis —typically to the liver. Metastatic disease is universally fatal. While traditional staging methods such as tumor size and location, still play a role in assessing metastatic risk, they are rarely used to individualize patient management plans. Newer methods include chromosomal gene expression analysis, yet these methods have their technical limitations. Clearly, what is needed is a better, cheaper and reproducible prognostic test.

A Universal Method For Quantifying Proteins, Small Molecules, Lipids, And Electrolytes

UCLA scientists in the Departments of Psychiatry & Biobehavioral Sciences and Human Genetics have developed a novel method for the simultaneous quantification of proteins, small molecules, lipids, and electrolytes.

Simple Imaging Tool for Oral Cancer Detection and Monitoring

UCI researchers have developed a miniature, flexible intra-oral probe with a camera that allows early detection of oral cancer lesions in difficult-to-see, high risk areas of the mouth and throat. The tool allows for a low cost, non-invasive procedure that can be easily adopted in non-specialist medical settings.

At Home Fetal Electrocardiogram/Heartrate Monitor for Congenital Heart Defect Diagnosis

Congenital heart defects affect >1% of babies born in the United States. These defects originate early on in fetal development. Inventors at UC Irvine have developed a flexible medical device that allows at home fetal electrocardiogram (ECG) monitoring to diagnosis congenital heart defects during development.

Drug Repurposing To Explore Novel Treatment For Cushing Disease

UCLA researchers in the Department of Medicine and the Department of Molecular and Medicinal Pharmacology have identified several small molecule reagents to treat Cushing disease.

“Polyp-Print”: A Methodology To Identify Which Colon Polyps Are Likely To Proceed To Colorectal Cancers

Colorectal cancer (CRC) is the second leading cause of cancer deaths in men and women combined in the United States, according to the American Cancer Society. Every day, patients undergo routine screening colonoscopies around the world for assessment of their risk of CRC. CRCs always arise from precursor lesions, called polyps. Since most patients with polyps are asymptomatic, tracking these lesions through fecal occult blood, rectosigmoidoscopy and colonoscopy enables the suspicion, detection and removal of the lesion. Since 2000, colonoscopy has become the most important examination to track polyps and CRC. Nowadays, in the USA, one out of four colonoscopies aim to track polyps. Besides detecting polyps, their removal through endoscopic polypectomy has proved to be effective to reduce the incidence of this tumor. Anatomopathological analysis enables the histological classification of adenomas, and also allows checking for dysplasia or neoplasm, as well as vascular and/or lymphatic invasion. This assessment determines if polypectomy and/or mucosectomy were effective to heal the patient who presented with polyp or CRC, or if therapeutics will be necessary. Typically, screening colonoscopies begin at age 50, and are done every 10 years. If polyps are encountered, based on their size and number and location, the risk is determined to be high vs low (completely arbitrarily, with no molecular basis at all). Bottomline, right now, there is no way to tell which polyp will become a cancer and which will not. Hence, some patients may be receiving over Rx and some may be under Rx. Clearly, what is needed is an invention that can predict the timing and consequences of multiple host events during CRC initiation and progression.

Method for the detection of specific cells in bodily fluids with a small fluorescent probe

Using standard cellular biology techniques, researchers at UCI have developed a method for detecting the cellular components of blood easily, cheaply, and quickly with accurate quantification using fluorescence techniques.

Very-Small-Nuclear Circulating Tumor Cell (vsnCTC) as a Diagnostic Biomarker of Visceral Metastasis in Advanced Prostate Cancer

UCLA researchers in the Department of Molecular and Medical Pharmacology have identified a novel biomarker that can be used to diagnose prostate cancer patients for the presence of visceral metastasis with 54% sensitivity and 100% specificity.

DARTS: Deep Learning Augmented RNA-seq Analysis of Transcript Splicing

Researchers led by Yi Xing have developed a novel deep learning algorithm to detect alternative splicing patterns in RNA-seq data


The CRISPR-Cas system is now understood to confer bacteria and archaea with acquired immunity against phage and viruses. CRISPR-Cas systems consist of Cas proteins, which are involved in acquisition, targeting and cleavage of foreign DNA or RNA, and a CRISPR array, which includes direct repeats flanking short spacer sequences that guide Cas proteins to their targets.  Class 2 CRISPR-Cas are streamlined versions in which a single Cas protein bound to RNA is responsible for binding to and cleavage of a targeted sequence. The programmable nature of these minimal systems has facilitated their use as a versatile technology that is revolutionizing the field of genome manipulation.  Current CRISPR Cas technologies are based on systems from cultured bacteria, leaving untapped the vast majority of organisms that have not been isolated.  There is a need in the art for additional Class 2 CRISPR/Cas systems (e.g., Cas protein plus guide RNA combinations).     UC Berkeley researchers discovered a new type of Cas 12 protein.  Site-specific binding and/or cleavage of a target nucleic acid (e.g., genomic DNA, ds DNA, RNA, etc.) can occur at locations (e.g., target sequence of a target locus) determined by base-pairing complementarity between the Cas12 guide RNA (the guide sequence of the Cas12 guide RNA) and the target nucleic acid.  Similar to CRISPR Cas9, Cas12 enzymes are expected to have a wide variety of applications in genome editing and nucleic acid manipulation.    

Methods of Discovering New Bile Acids and Use in Treating Inflammatory Diseases

A mosaic of cross-phyla chemical interactions occurs between all metazoans and their microbiomes. In humans, the gut harbors the heaviest microbial load, but many organs, particularly those with a mucosal surface, associate with highly adapted and evolved microbial consortia. The microbial residents within these organ systems are increasingly well characterized, yielding a good understanding of human microbiome composition. However, we have yet to elucidate the full chemical impact the microbiome exerts on an animal and the breadth of the chemical diversity it contributes. A number of molecular families are known to be shaped by the microbiome including short-chain fatty acids, indoles, aromatic amino acid metabolites, complex polysaccharides, and host sphingolipids and bile acids. These metabolites profoundly affect host physiology and are being explored for their roles in both health and disease. The synthesis of bile acids takes place in the liver and recent research has shown that bile acids can act as signaling molecules and activate a number of molecules. A primary focus has been on the Farnesoid X receptor (FXR) which plays an important role in bile acid synthesis and in regulation of glucose, lipid and energy metabolism.

A Method For Digital Pathology Using Augmented Reality

UCLA researchers in the Departments of Electrical Engineering and Computer Engineering have developed a novel method for automated image analysis of digital pathology slides.

Quantitative Determination Of Esterified Eicosanoids and Related Oxygenated Metabolites After Alkaline Hydrolysis

Eicosanoids and related metabolites, sometimes referred to as oxylipins, are a group of structurally diverse metabolites that derive from the oxidation of PUFAs, including arachidonic acid, linoleic acid, and linolenic acid, dihomo linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid. They are locally acting bioactive signaling lipids that regulate a diverse set of homeostatic and inflammatory processes. Given the important regulatory functions in numerous physiological and pathophysiological states, the accurate measurement of eicosanoids and other oxylipins is of great clinical interest and lipidomics is now widely used to screen effectively for potential disease biomarkers.

A High Potency CYP3A4 Inhibitor for Pharmacoenhancement of Drugs

      CYP3A4 is the most clinically relevant drug metabolizing enzyme in the body, as it is responsible for the oxidation and breakdown of ~60% of current drugs on the market.  Researchers at UCI have developed novel CYP3A4 inhibitors, that are highly potent and more specific, exhibit fewer side effects, and are both cheaper, and easier to-synthesize than current commercially available CYP3A4 inhibitors. 

Prediction Tools for Vedolizumab Drug Exposure and Efficacy for Ulcerative Colitis and Crohn’s disease

Vedolizumab (VDZ) is an effective therapy for the management of patients with moderately to severely active ulcerative colitis (UC) or Crohn’s disease (CD) who have failed conventional therapy with aminosalicylates, corticosteroids, and thiopurines, as well as biologic therapy with tumor necrosis factor (TNF) antagonists. Several studies have identified potential predictors of treatment outcomes; however, the optimal approach to integrating predictors into routine practice is uncertain.No prior decision support tools exist to predict VDZ drug exposure in UC and CD and link this back to differences in effectiveness or response to VDZ dose escalation. By having a tool that can predict at baseline prior to start of therapy whether VDZ will be effective and what a patients drug exposure profile will be with VDZ, the provider can 1) determine if VDZ is an appropriate therapy to begin, 2) proactively monitor those patients deemed high risk for treatment failure with VDZ, and 3) proactively measure drug concentrations for VDZ to then increase the dose or the interval at which VDZ is administered to improve outcomes.

Novel Synthesis of Streptogramin A Antibiotics

A modular, scalable, chemical synthesis platform that produces new Streptogramin A class antibiotic candidates.

A New Human-Monitor Interface For Interpreting Clinical Images

UCLA researchers in the Department of Radiological Sciences have invented a novel interactive tool that can rapidly focus and zoom on a large number of images using eye tracking technology.

Phenotypic Profiling Of Hepatocellular Carcinoma Circulating Tumor Cells For Treatment Selection

Researchers in the UCLA Departments of Surgery and Molecular and Medical Pharmacology have developed a novel blood-based assay that can capture and characterize circulating tumor cells indicative of both early- and late-staged hepatocellular carcinoma (HCC).

A New Mechanism For Hypertriglyceridemia In Humans

UCLA researchers in the Department of Medicine have identified autoantibodies against GPIHBP1, a GPI anchored protein of capillary endothelial cells, which may provide a novel therapeutic strategy for patients with hypertriglyceridemia.

Ultrafast Differential Interference Contrast Microscopy

UCLA researchers in the Department of Electrical Engineering have developed a novel instrument that can image unstained transparent objects with high speeds.

A High Throughput Biochemical Fluorometric Method For Measuring HDL Redox Activity

UCLA researchers in the Department of Medicine have developed a method of screening for the functional properties of high-density lipoprotein (HDL) in the blood that may serve as a more accurate risk indicator of cardiovascular disease.

Predicting the Placebo Response and Placebo Responders in Medicated and Unmedicated Patients Using Baseline Psychometric and Clinical Assessment Score

UCLA researchers have developed a method and model to predict the placebo effect and placebo responsiveness using the 30-item baseline positive and negative syndrome scales (PANSS) scores, within both the medicated and unmedicated Schizophrenia patients.

3D Population Maps for Noninvasively Identifying Phenotypes and Pathologies in Individual Patients

UCLA researchers in the Department of Radiological Sciences have developed a novel computation system that uses large imaging datasets to aid in clinical diagnosis and prognosis.

Optical Coherence Tomography To View Assess And Count Hair Follicles

The invention is a portable imaging system for assessing the condition of hair loss. Optical coherence technology is adopted to provide an accurate, wide view and fast imaging solution. The system provides precise insight on the health of the hair follicle and its potential to regrow new hair, which is crucial for assessing the efficacy of hair regrowth treatments.

  • Go to Page: