Please login to create your UC TechAlerts.
Request a new password for
Required
Find technologies available for licensing from UC Riverside.
No technologies match these criteria. Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above
Software to Diagnose Sensory Issues in Fragile X Syndrome and Autism
Professor Anubhuti Goel and colleagues from the University of California, Riverside have developed a novel diagnostic tool and software program that provides a quick, objective measure of sensory issues for individuals with Autism spectrum disorders and Fragile X syndrome. This tool works by using a software application to administer a game. Based on the individual’s score at the end of the game, a diagnosis about sensory issues may be made. This technology is advantageous because it may provide an easily accessible, low cost, and safe diagnostic tool for Fragile X Syndrome and Autism that can be developed as a telehealth diagnostic tool.
Novel Continuous Method to Monitor and Predict Dyspnea
Professor Erica Heinrich and their team from the University of California, Riverside have developed a novel clinical tool that can be used for the continuous, objective prediction and monitoring of dyspnea in hospitalized and ICU patients. This tool works by using machine learning models to continuous monitor and predict bouts of dyspnea, even when patient monitoring is difficult due to sedation or other medical conditions. This technology has been tested in healthy individuals and is advantageous because it leverages non-invasive biomarkers and it is designed to overcome the subjectivity and low resolution of current methods.
Bersavine-Derived c-Myc Targeting Compounds as a Broad Anti-Cancer Therapy
Professor Kevin Kou and his team at the University of California, Riverside, in collaboration with Professor Wendong Huang's lab at City of Hope, have developed a new method for synthesizing modified versions of bersavine. Using this method, several novel bersavine compounds were synthesized. When these new compounds were tested against lymphoma cells, powerful anti-cancer effects were demonstrated. Notably, these newly synthesized analogs are more effective at inhibiting cell growth than the naturally occurring bersavine.
AI-Powered Early Warning System for Honeybee Colony Health
Brief description not available
High-Speed, High Field-Of-Field Of View Hybrid Polarimetric Camera With Compressive Sensing
Steerable Laser Interstitial Thermotherapy Robot
Shape Memory Alloy Enabled Robotic Modular Mass Debrider
Novel AMPK Inhibitors and Activators
Professor Kevin Kou and colleagues from the University of California, Riverside and the City of Hope National Medical Center have developed a chemical synthetic strategy that allows for the efficient generation of a diverse library of oxyberberine derivatives. This technology is advantageous because the family of protoberberine molecules, the best known being berberine, is generally considered non-toxic. As such, protoberberine derivatives are likely to elicit a better safety profile compared to existing AMPK inhibitors that are highly toxic and be developed to treat a range of diseases. Fig 1: Four of the UCR novel AMPK inhibitors resulting from the UCR synthesis strategy.
Creatine Microparticles for Highly Effective Intranasal Delivery
Professor Xiaoping Hu’s lab at the University of California, Riverside has developed a novel method that allows creatine to bypass the BBB and directly reach the brain. The technology works by delivering creatine intranasally using microparticles. These creatine particles have shown to not exhibit cytotoxicity, are highly stable, and are not disruptive to cell barriers. This technology is advantageous over traditional creatine monohydrate and anhydrous creatine because the smaller particle size ensures even distribution and greater permeability across the BBB.
Nanoparticles With Enhanced Fluorescence for Medical Imaging and Research Purposes
Professor Bahman Anvari and colleagues from the University of California, Riverside and the University of Maryland have developed nanoparticle systems with greater fluorescence emission when compared to known dyes. These nanoparticles incorporate dual near infrared fluorescence (NIR) and magnetic resonance (MR) dyes for improved fluorescence. The nanoparticles encapsulate brominated carbocyanine dyes with MR qualities and ICG with NIR properties. This technology is advantageous because these nanoparticles containing these dyes exhibit greater fluorescence emission when compared to the individual dyes. This presents a promising dual-mode platform with high optical sensitivity and clinical diagnostic and research applications.
Novel Proteasome Inhibitors
This technology provides methods for synthesizing a group of naturally occurring compounds, syrbactins, and their derivatives, being of significant commercial value due to the ability of some of the members to inhibit proteasomal activity. TIR-199, for example, is one of the most potent proteasome inhibitors synthesized so far. The efficacy and efficiency of this novel drug candidate in inducing tumor cell death in multiple myeloma, neuroblastoma, and other types of cancer (e.g. kidney, colon, melanoma, ovarian) has been demonstrated using in vitro systems, cell lines, and animal models (reported for the first time for a syrbactin compound). TIR-199 drug candidate is ready for further pre-clinical and eventually clinical studies.
High-Fidelity Cas13a Variants
Professor Giulia Palermo and colleagues from the University of California, Riverside and the University of Rochester have developed high-fidelity Cas13a variants with increased sensitivity for base pair mismatches.The activation of these Cas13a variants can be inhibited with a single mismatch between guide-RNA and target-RNA, a property that can be used for the detection of SNPs associated with diseases or specific genotypic sequences.
Handheld Device For Quick DNA Extraction
Professor Hideaki Tsutsui and colleagues from the University of California, Riverside have developed a portable handheld device for nucleic acid extraction. With its high-speed motor, knurled lysis chamber for rapid sample lysis, and quick nucleic acid extraction using paper disks, this device can yield ready-to-use extracts in just 12 minutes, significantly reducing the time required for sample preparation. This technology is advantageous over current methods as it can be expedited without the need for cumbersome specimen collection, packaging, and submission, shortening the turnaround time.
The Poor Man’s Trough: A Bench Top Motor Free Method To 3D Langmuir-Blodgett Films
Aerobic Biotransformation and Defluorination of ether PFAS
Substantial defluorination of chlorinated PFCAs
Isolette-Msa, The Intelligent Isolette Through Integration Of Artificial Intelligence (Ai) Drive Multi-Sensors
A General Magnetic Assembly Approach To Chiral Superstructures At All Scales
Daily Move© - Infant Body Position Classification
Prof. John Franchak and his team have developed a prototype system that accurately classifies an infant's body position.
Dual Mode Velocity Selective Arterial Spin Labeling (Vsasl)
Smart Insulin Leak Detector
Methods Of Synthesis Of Quantum Composites And Applications For Energy Storage And Reflective Coatings
Novel Cell Penetrating Peptide for Drug Delivery
Professor Min Xue and his lab at the University of California, Riverside have developed a novel hydrophilic endocytosis-promoting peptide (EPP6) rich in hydroxyl groups with no positive charge that may be used for drug delivery purposes. This peptide is non-toxic and has been shown to transport a wide array of small-molecule cargos into a diverse panel of cells. It enables oral administration and absorption through the intestinal lining, and crosses the BBB in vivo. UCR EPP6 is advantageous over existing technologies since it is nontoxic, efficiently enables oral absorption and transport across the BBB. Fig 1: A) Structure of the UCR EPP. B) Confocal images showing that EPP6 was able to transport different cargo molecules into the cells. C) Orally administered EPP6 is absorbed by the intestines, entering the blood circulation and reaching the brain.
New Device to Test for Pulmonary Function for 21st Century Care
Prof. Mona Eskandari, whose research is known for seminal strides in experimental characterization and computational modeling of lung structural mechanics using novel techniques developed in her lab, has discovered a new method for measuring pulmonary function. It works by analyzing the change in temporal pressure while a patient is holding their breath. The measurement device is simple, comfortable and error-free for the patient to self-administer. Algorithms are used to transform the detailed lung data collection into actionable metrics for early detection capabilities for medical intervention and prevention. The discovery could provide more accessible, detailed, timely, and actionable data on lung function compared to conventional and currently used methods. Fig 1: The medical device prototype being tested in the laboratory Fig 2: Preliminary data exhibiting detectable differences between several healthy and diseased mice lungs when utilizing the proposed new pulmonary function method
Functionalized Sila-Adamantane