Available Technologies

Find technologies available for licensing from all ten University of California (UC) campuses.

No technologies match these criteria.
Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above

Magnetically Controlled Casting Process

Brief description not available

Process to Synthesize Size Controlled Nanocrystalline Materials for Battery Electrodes

Researchers at UCR have developed a scalable and affordable process for synthesizing nanostructure materials like LiFePO4 (LFP) at low temperatures (150 to 200 oC) with highly reproducible sizes and morphologies. The nanocrystalline structures may be utilized as active elements in battery cathodes or anodes to enhance charging cycle stability or enhance capacitance (including when doped with conductive metals). The process is performed at relatively low temperatures, and uses environmentally friendly solvents.  This results in lower up front and ongoing manufacturing costs in cathode and anode production.  The particle size and shape, as well as crystal orientation of the produced structures can be controlled, not only preventing loss of performance and capacity due to increased stresses and charge de-stabilization, but also improving rate capability.  The nanostructures created with this method will result in increased battery power and energy density. Fig. 1: Reproducible nanoprism crystal morphologies produced via the method described here. Fig. 2: Reproducible nanobelt crystal morphologies produced via the method described here.

Impact Resistant Composites and Tough Materials

Manufacturers have been looking for a next-generation of composite materials that can absorb the shock and impact of intense collisions and accidents.  Some plastic composites and metal alloys have offered the advantage of being light weight, but they are still limited in their ability to have comparable shock resistance to their heavier metal counterparts.  Further, their high costs have made them cost prohibitive for their limited benefits.                                      

Lower Cost Method for Fabricating Porous Metal Oxide Composites

Researchers at the University of California, Riverside have developed lower cost methods to synthesize metal oxide composites. The metal organic particles are fabricated by first dispersing a metal oxide precursor with a dispersing agent. The pH of the dispersing agent is set between 7.8 and 11. These conditions promote binding of the metal oxide and dispersing agent in solution. The resulting mixture is then heated at lower temperatures than current processes and subsequently extruded to form the desired geometry. The nanoparticles can be recovered and reused for further treatment. Metal oxides can also be fabricated into stand-alone structures, eliminating the need for nanoparticle recovery. Fig. 1 Continuous stirred tank reactor (CSTR) fabrication method for the metal oxide particles. Metal oxide is mixed with the dispersing agent, then washed, heat-treated and finally extruded into the desired geometry   Fig. 2 Dried cubes of TiO2 mixed with PVA dispersing agent  

Multimodal Coatings For Heat And Fire Resistance

Brief description not available

  • Go to Page: