Available Technologies

No technologies match these criteria.
Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above

Find technologies available for licensing from UC Irvine.

Vaccine Against Herpes Simplex Virus Infection

Herpes simplex virus (HSV) infections affect billions of patients worldwide and can manifest its symptoms as painful blisters or ulcers at oral, ocular or genital locations. Symptomatic patients can currently only alleviate their pains with antiviral medication. This technology proposes a shift in focus toward novel protective epitopes as the foundation for new vaccines.

An Implantable Electrocorticogram (ECoG)-Brain-Computer Interface System for Restoring Lower Extremity Movement and Sensation

A fully implantable brain-computer interface (BCI) with onboard processing to control a robotic gait exoskeleton as a walking aid for individuals with chronic spinal cord injury (SCI). This technology would alleviate SCI patient’s dependence on wheel chairs, reducing the risk of secondary medical complications that account for an estimated $50 billion/year in healthcare costs.

Automatic Personal Daily Activity Tracking

Researchers at UCI have developed an entirely unobtrusive method for chronicling and analyzing an individual’s daily activities over time, which relies on tracking user activity via their smartphone. This technology has important applications in health and behavior monitoring, where it can be used to signal the early stages of various diseases and disorders.

Robust High Speed Analog QAM Demodulator for Advanced Wireless Applications

Wireless applications are witnessing major advancement in fields like virtual reality and cellular phones, thus requiring much higher data transfer speed. This technology is a novel architecture for wireless receivers that accommodates such targeted high data rates, while maintaining a cost efficient design; power efficient while still utilizing simple circuits design, through replacing complicated digital blocks with innovative analog ones.

Zero-power microfluidic osmotic pumps using ultra-thin PDMS membranes

Researchers at UCI have developed a zero-energy, inexpensive micropump that uses osmotic pressure alone to draw fluid through a microfluidic device.

Hydrostatic pressure-driven passive micropumps

Researchers at UCI have developed an inexpensive and entirely passive pump for microfluidic devices, which yields steady, controllable, and long-lived fluid flow through the device.

Capture device for small urinary tract stones

The invention is a surgical device designed to remove miniature fragments of uroliths that are less than 2 mm in size. Through the invention’s novel design, such small fragments are captured in the device which will then be easily removed by the surgeon. Removing small stone fragments will reduce the need for future medical procedures.

Methods for Enhancing Cell Populations for Articular Cartilage Repair

Cartilage lesion treatments require expanding cells from healthy donor cartilage which have limited availability and restricted potential to produce cartilage. This invention overcomes these challenges, presenting chemical and physical methods for enhancing cell populations capable of producing neocartilage. According to a 2015 global market report, tissue engineering technologies are expected to reach over 94B USD by 2022.