Available Technologies

No technologies match these criteria.
Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above

Find technologies available for licensing from UC Irvine.

3D Printer with Improved Selective Laser Sintering (SLS)

Three dimensional (3D) printer and rapid prototyping (RP) systems are currently used to quickly produce objects and to prototype parts using CAD tools. Most RP systems use an additive, layer-by-layer approach to building parts by joining liquid, powder, or sheet materials to form physical objects. Some of these RP systems through selective laser sintering amalgamate materials by heating them with lasers to generate 3D printed objects. Researchers at the University of California, Irvine have created a new 3D printer with improved selective laser sintering. The new 3D printer and process varies the composition of the materials in a 3D printed object thus creating an object with enhanced strength, conductivity, heat resistance and other enhancing properties.

Method for creating a macular/retinal degeneration animal model

Researchers at UCI have developed an animal model that mimics the onset and progression of age-related macular degeneration, an incurable disease that is the fourth-leading cause of blindness globally. The model serves as a means for testing the efficacy of possible treatments and cures.

Automated titration of vasopressor infusion within predefined guardrails for efficient hypotension management

The invention automatically controls the blood pressure of patients on a continuous basis. It monitors the blood pressure and takes an action, within safety limits, whenever needed. The invention represents a dramatic improvement in the hypotension and critical care management.

Calcified Polymeric Valve and Vessels

A cast molded methodology for creating polymeric heart valves and vessels with calcium apatite inclusions. The heart valves and vessels can then be implanted in animals to test cardiovascular medical device efficacy.

A Low-Cost-Wafer-Level Process For Packaging MEMS 3-D Devices

A low-cost solution to robust electronic packaging of 3-D MEMS devices using micro-glassblown “bubble-shaped” structures.

Bioorthogonally-Engineered Extracellular Vesicles for Applications in Detection and Therapeutic Delivery

Extracellular vesicles (EVs) are promising as drug delivery carriers because they are inherently biocompatible, It would be desirable to efficiently, specifically, and rapidly change the EVs surface presentation to program the interactions with its target cells. Inventors at UC Irvine have developed a strategy for functionalizing the cellular membranes of EVs with precision and ease.

Antimicrobial, Stimuli-responsive Polysaccharide

State of the art antimicrobial therapeutics, while effective and promising, remain only short-term solutions to the overall challenge of drug-resistant microbes. UCI researchers have developed a chitosan-based nanoantibiotic that is non-toxic and carries potential for broad spectrum use.

A Technique For Securing Key-Value Stores Against Malicious Servers

The advent of the Internet of Things (IoT) has drastically increased the potential scale and scope of destruction hackers can cause. Cloud servers now control and monitor devices such as cars, smart home controls, fitness trackers, medical monitoring systems. These cloud-based devices are at risk, however, in that if they become compromised, third parties could gain full control of all devices and stored information associated with that server. UCI researchers have developed the FIDELIUS system, a technique for secure communication and information storage.