Available Technologies

No technologies match these criteria.
Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above

Find technologies available for licensing from UC Irvine.

System and Method for High Density Assembly and Packaging of Micro-Reactors

High density micro-reactors are fabricated to form an array of wells into a surface for use in high throughput microfluidic applications in biology and chemistry. Researchers at the University of California, Irvine developed a method for increasing micro-reactor densities per unit area using rapidly self-assembled three-dimensional crystalline formation droplet arrays, and a device for performing the same.

ParBreZo - a rapid, high-resolution flood inundation modeling software

By mid-century, flooding is predicted to cause annual losses of $52 billion. The ParBreZo v.8.0 software developed at UCI can predict flood inundation at better than 30 feet resolution, and within a short span of time. These predictions will help plan and prepare for future floods, respond intelligently to on-going flooding, and learn from past floods.

Handheld Device to Detect Ear Infections

Acute otitis media (AOM) is a painful ear infection with a high incidence rate in children. Despite its prevalence, it is commonly misdiagnosed especially in the youngest children, in part due to obstruction of the ear canal by earwax. Researchers at UCI have developed a compact, low-cost, adaptable device to diagnose otitis media through LED light absorption. The device is able to diagnose otitis media through earwax that could be obstructing the view of the eardrum.

Nonlinear Optical Photodynamic Therapy of the Cornea for Corneal Disorders, Cancer, and Infection

Inventors at UC Irvine have developed an apparatus and method using nonlinear optical photodynamic therapy (NLO-PDT) for modifying corneal shape and treating progressive corneal astigmatism and refractive errors. The selectively focused femtosecond-near infrared laser light and apparatus improves upon existing methods by providing rapid (< 1min) corneal treatment that minimizes unwanted cellular damage to the eye through precise lateral and axial treatment to the cornea.

Defending Side Channel Attack In Addictive Layer Manufacturing Systems

Additive layer manufacturing systems, also known as 3D printers, are a powerful tool for manufacturers in both rapid prototyping stage and full-scale production. Sensitive intellectual property is carried in the electronic information of the design files utilized by 3D printers. However, the physical characteristics of the machine in operation, including power, temperature, sounds, and motion can also reveal sensitive information that could be used to reverse-engineer a product. The inventors at UCI have demonstrated the threat posed by such side-channel attacks, and have developed countermeasures that obscure information which would otherwise be exposed during printer operation.

Stimulation of Hair Growth

Currently-available treatments for human hair loss take months to show efficacy and have numerous side effects. No treatment exists for efficiently activating lasting hair growth. UCI scientists have discovered cell- and biological agent- based therapy to stimulate faster new hair growth compared to conventional treatments.

Extracellular Nano-vesicles For Applications In Therapeutic Delivery

Drug delivery relies on nano-sized carriers whose objectives are to protect cargo from the body and to release the cargo at the appropriate site without inducing immunogenic response. The inventors at UCI have developed a method of mass producing extracellular nano-vesicles that have shown promise for drug delivery, but have been slow to progress to clinical trials due to low production yields.

Determination Of Absolute Configuration Of Secondary Alcohols Using A Competing Enantioselective Conversion Kit

The absolute configuration of an organic compound dictates its interactions with other chemicals. The Competing Enantioselective Conversion (CEC) method is an attractive method for determining the absolute configuration of secondary alcohols, but the preparation of stock reagent solutions takes longer than the analysis time itself – a mere 1-2 hours. The inventors at UCI have developed a CEC kit which contains stock solutions of the components required for CEC that remain stable and usable for several months.