Available Technologies

No technologies match these criteria.
Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above

Find technologies available for licensing from all ten University of California (UC) campuses.

An Improved On-Chip Crosstalk Noise Model

Researchers led by Jason Cong from the Department of Computer Science at UCLA have developed an improved on-chip crosstalk noise model to optimize integrated circuit design.

High Pressure, Laser Floating Zone Crystal Growth Furnace

A furnace that allows for the growth of crystalline material under applied gas pressures of up to 1000atm.

Control Of Photoelectrochemical Etch Parameters For Minimization of Interfacial Roughness of Light Emitting Device Structures

A way to separate micron/sub-micron scale, c-plane LEDs and other devices from their growth substrates.

Transparent Vertical Cavity Surface Emitting Laser for Augmented and Mixed Reality Displays

Using vertical cavity surface emitting lasers as an alternative for transparent displays in augmented and mixed reality applications.

Enhancement of Semi-Polar Gallium Nitride Surface Morphology in Photo-Electrochemical Undercut Etching

An etching technique that utilizes photo-generated holes to permit the electrochemical etching of a material, such as III-nitride, by achieving smooth etched n-type semipolar GaN surfaces. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman",serif;}

Fabrication of Relaxed Semiconductor Films without Crystal Defects

A technique for making relaxed InGaN layers without crystal defects.

Methods of Discovering New Bile Acids and Use in Treating Inflammatory Diseases

A mosaic of cross-phyla chemical interactions occurs between all metazoans and their microbiomes. In humans, the gut harbors the heaviest microbial load, but many organs, particularly those with a mucosal surface, associate with highly adapted and evolved microbial consortia. The microbial residents within these organ systems are increasingly well characterized, yielding a good understanding of human microbiome composition. However, we have yet to elucidate the full chemical impact the microbiome exerts on an animal and the breadth of the chemical diversity it contributes. A number of molecular families are known to be shaped by the microbiome including short-chain fatty acids, indoles, aromatic amino acid metabolites, complex polysaccharides, and host sphingolipids and bile acids. These metabolites profoundly affect host physiology and are being explored for their roles in both health and disease. The synthesis of bile acids takes place in the liver and recent research has shown that bile acids can act as signaling molecules and activate a number of molecules. A primary focus has been on the Farnesoid X receptor (FXR) which plays an important role in bile acid synthesis and in regulation of glucose, lipid and energy metabolism.

A Solution Method To Improve Nanowires Connection And Its Applications In Electro-Related Areas

UCLA researchers in the Department of Materials Science and Engineering have developed a simple solution-based method for fabricating highly conductive transparent silver nanowire (AgNW) films with excellent adhesive capabilities and noteworthy electrical, mechanical, and optical performance.