Please login to create your UC TechAlerts.
Request a new password for
Required
Find technologies available for licensing from all ten University of California (UC) campuses.
No technologies match these criteria. Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above
Arg Accelerates Proximity-Enabled Sufex Reaction Rate In Proteins
Brief description not available
Improvement Of Glycemic Control Through Beta-Cell Administration Of Mir192
Small Molecule Pcsk9 Inhibitors
Robust Memristive Switching
Historically, radio frequency and microwave switches have historically relied on either electromechanical switches (which suffer from limited speed and reliability) or solid-state switches such as PIN diodes and field-effect transistors (FETs), both of which require continuous bias current to maintain their states, consuming significant power in modern communication systems. In particular, solid-state switches (PIN diodes and FETs) require continuous DC power to maintain their ON or OFF states, leading to substantial energy consumption particularly problematic for battery-operated devices and large-scale systems like 5G/6G base stations and Internet of Things networks. Emerging non-volatile RF switches based on phase-change materials (PCM) and other memristive devices have shown promise but are constrained by large switching energies, limited resistance modulation ratios (typically < three orders of magnitude), volatile behavior requiring thermal maintenance above transition temperatures, and low endurance.
AAV-Based Gene Therapy for Glioblastoma Treatment Using Interferon Cytokines
Enhancing Cancer Immunotherapy with Modified Adaptor Protein and CAR-NK Cell Technology
Rippled Beta-Sheets From Mixed Chirality Linear And Cyclic Peptides
Researchers at UC Santa Cruz have expanded the knowledge on the rippled β-sheet, a protein structural motif formed by certain racemic peptides. Rippled β-sheets already show potential for Alzheimer’s research and drug delivery and leads to formation of hydrogels with enhanced properties. Researchers at UC Santa Cruz have further added to the structural foundation of rippled β-sheets, better understanding how rippled β-sheet formation can be controlled at the molecular level.
Next-Generation Monoclonal Antibody Therapy Targeting High-Risk Tumors