Browse Category: Medical > Imaging

[Search within category]

(SD2023-232) Multi-Dimensional Widefield Infrared-encoding Spontaneous Emission Microscopy

Hyperspectral imaging (HSI) is an emerging imaging modality for medical applications, especially in disease diagnosis and image-guided surgery. HSI acquires a three-dimensional dataset called hypercube, with two spatial dimensions and one spectral dimension. Spatially resolved spectral imaging obtained by HSI provides diagnostic information about the tissue physiology, morphology, and composition. Researchers from UC San Diego developed a new method using a pair of femtosecond mid-infrared and visible excitation pulses to distinguish chromophores, including molecules and quantum dots, that possess nearly identical emission spectra using multiplexed conditions in a three-dimensional space. 

MR-Based Electrical Property Reconstruction Using Physics-Informed Neural Networks

Electrical properties (EP), such as permittivity and conductivity, dictate the interactions between electromagnetic waves and biological tissue. EP are biomarkers for pathology characterization, such as cancer. Imaging of EP helps monitor the health of the tissue and can provide important information in therapeutic procedures. Magnetic resonance (MR)-based electrical properties tomography (MR-EPT) uses MR measurements, such as the magnetic transmit field B1+, to reconstruct EP. These reconstructions rely on the calculations of spatial derivatives of the measured B1+. However, the numerical approximation of derivatives leads to noise amplifications introducing errors and artifacts in the reconstructions. Recently, a supervised learning-based method (DL-EPT) has been introduced to reconstruct robust EP maps from noisy measurements. Still, the pattern-matching nature of this method does not allow it to generalize for new samples since the network’s training is done on a limited number of simulated data pairs, which makes it unrealistic in clinical applications. Thus, there is a need for a robust and realistic method for EP map construction.

Improved laser wakefield acceleration-based system for cancer diagnostics and treatment

Researchers at UC Irvine have developed methods to facilitate the delivery of a high dose, low energy electron beam or X-ray in a compact manner.

Hybrid Emission Tomography System and Methods

Common nuclear imaging techniques include computed tomography (CT), single photon emission CT (SPECT), and positron emission tomography (PET). PET differs from other nuclear imaging techniques in that it can visualize both functional and biological activities, including detection of metabolism within human tissues. PET is especially good for imaging patients with cancer, or brain or heart conditions. At low energies, when positrons collide with electrons near the radionuclide decay, Gamma rays (annihilation photons) are created. Gammas originating from the same electron-positron annihilation are generated exclusively in an entangled Bell state. Gammas which do not share an annihilation origin event, such as randoms, are not entangled. Additionally, a gamma which undergoes an internal scatter becomes decoherent (unentangled) from its pair, such as the gammas found in the scattered coincidence pairs. Scattered and random events degrade the image quality. Recently, quantum-based techniques utilizing entanglement of annihilation photons has been recognized as one approach to address scatter and random and to optimize the signal to noise (SNR) ratio.

(SD2022-320) Method to improve the sampling rate for photoacoustic imaging

High-frequency photoacoustic tomography (> 20 MHz) is becoming increasingly important in biomedical applications. However, it requires data acquisition (DAQ) to have commensurately high sampling rate, which imposes challenges to hardwires and increases the cost of building a PA imaging system. For example, the sampling rate should be higher than 80 MHz to cover 100% bandwidth of a 26-MHz transducer (Nuquist limit). A commercial PA imaging system such as Vevo LAZR X (Fujifilm VISUALSONICS Inc. ON, Canada) with 80-MHz sampling rate can cost more than 990,000$ in the United States.Many PA groups use clinical ultrasound DAQs, which are low cost but also have a low sampling rate, e.g., the iu22 system’s sampling rate is 32 MHz.

Hyperspectral Microscopy Using A Phase Mask And Spectral Filter Array

Hyperspectral imaging, the practice of capturing detailed spectral (color) information from the output of an optical instrument such as a microscope or telescope, is useful in biological and astronomical research and in manufacturing. In addition to being bulky and expensive, existing hyperspectral imagers typically require scanning across a specimen, limiting temporal resolution and preventing dynamic objects from being effectively imaged. Snapshot methods which eliminate scanning are limited by a tradeoff between spatial and spectral resolution.In order to address these problems, researchers at UC Berkeley have developed a hyperspectral imager which can be attached to the output of any benchtop microscope. The imager is compact (about 6-inches), and can achieve a higher spatial resolution than traditional snapshot imagers. Additionally, this imager needs only one exposure to collect measurements for an arbitrary number of spectral filters, giving it unprecedented spectral resolution.

Improved system for imaging of large biological samples in high refractive index solutions

Novel system for imaging of specimens in high refractive index solutions on the Zeiss Z.1 fluorescence light sheet microscope. System will allow for deep imaging of large and intact biological samples (i.e. mouse brain) for enhanced optical resolution and faster imaging speed.

Polysaccharide A-Based Particulate Systems For Attenuation Of Autoimmunity, Allergy and Transplant Rejection

Researchers at the University of California, Davis have developed a customizable polysaccharide that can be added to nanoparticles to reduce their rejection by the human immune system.

Spectral Fluctuation Raman Spectroscopy (SFRS)

The function of living tissue relies not only on its structure, but crucially on its dynamics at an array of timescales. Structural imaging of biological molecules at very high resolution has become routine in recent years, but these static snapshots provide little insight into the structural changes crucial for biological function. It is well known that changes in the geometry of macromolecules induce fluctuations in the Raman spectrum, but measurements of these fluctuations inherently suffer from poor signal strengths, meaning that dynamics at many timescales are obscured by the time-averaging necessary to obtain sufficient sensitivity.To address these problems, researchers at UC Berkeley have developed a method for probing the Raman spectrum, and hence dynamics of biological molecules at very high sensitivity and across timescales inaccessible to extant techniques. This technique, in fact, can in principle obtain arbitrarily fine spectral and temporal resolution, opening the door to, for example, probe everything from the dynamics of side chain rotations (picoseconds) to protein folding and domain motion (milliseconds).

Nanophotonic Perovskite Scintillator For Time-Of-Flight Gamma-Ray Detection

Positron emission tomography (PET) scanners map the metabolic or biochemical function of tissues by detecting the gamma radiation released by the decay of radioactive tracers ingested by a patient. This technology is particularly useful for mapping tumors because one can devise tracers which tumor cells uptake preferentially. Current gamma radiation detectors are expensive and inefficient, requiring large integration times and radionuclide doses for meaningful image quality. Additionally, the spatial resolution of the resulting map is limited by detector latency, which for traditional technology is 200-500 picoseconds.To address these problems, researchers at UC Berkeley have developed a novel gamma radiation detector with much greater time resolution (potentially down to 10 picoseconds), and higher efficiency (nearly all gamma rays successfully detected). Additionally, these detectors use well-established nanotechnology manufacturing methods and can be produced an order of magnitude more cheaply than existing detectors. The high efficiency of these detectors allows amounts of radioactive tracer used to be decreased by an order of magnitude and spatial resolution to be increased by an order of magnitude when compared to traditional methods.

Systems For Pulse-Mode Interrogation Of Wireless Backscatter Communication Nodes

Measurement of electrical activity in nervous tissue has many applications in medicine, but the implantation of a large number of sensors is traditionally very risky and costly. Devices must be large due to their necessary complexity and power requirements, driving up the risk further and discouraging adoption. To address these problems, researchers at UC Berkeley have developed devices and methods to allow small, very simple and power-efficient sensors to transmit information by backscatter feedback. That is, a much more complex and powerful external interrogator sends an electromagnetic or ultrasound signal, which is modulated by the sensor nodes and reflected back to the interrogator. Machine learning algorithms are then able to map the reflected signals to nervous activity. The asymmetric nature of this process allows most of the complexity to be offloaded to the external interrogator, which is not subject to the same constraints as implanted devices. This allows for larger networks of nodes which can generate higher resolution data at lower risks and costs than existing devices.

Sequential Targeting and Crosslinking Nanoparticles for Tackling the Multiple Barriers to Treat Brain Tumors

Researchers at the University of California, Davis have developed an approach to improve drug delivery to tumors and metastases in the brain. Their multi-barrier tackling delivery strategy has worked to efficiently impact brain tumor management while also achieving increased survival times in anti-cancer efficacy.

Type III CRISPR-Cas System for Robust RNA Knockdown and Imaging in Eukaryotes

Type III CRISPR-Cas systems recognize and degrade RNA molecules using an RNA-guided mechanism that occurs widely in microbes for adaptive immunity against viruses. The inventors have demonstrated that this multi-protein system can be leveraged for programmable RNA knockdown of both nuclear and cytoplasmic transcripts in mammalian cells. Using single-vector delivery of the S. thermophilus Csm complex, RNA knockdown was achieved with high efficiency (90-99%) and minimal off-targets, outperforming existing technologies of shRNA- and Cas13-mediated knockdown. Furthermore, unlike Cas13, Csm is devoid of trans-cleavage activity and thus does not induce non-specific transcriptome-wide degradation and cytotoxicity. Catalytically inactivated Csm can also be used for programmable RNA-binding, which the inventors exploit for live-cell RNA imaging. This work demonstrates the feasibility and efficacy of multi-subunit CRISPR-Cas effector complexes as RNA-targeting tools in eukaryotes.

Variable Exposure Portable Perfusion Monitor

Brief description not available

Method and Device for Designing Smooth Sequences of Spoke Endpoints in MRI

A key advantage of radial MRI is that it enables imaging in the presence of motion. Radial trajectories suitable for motion-tolerant imaging must order spoke directions to achieve uniform angular sampling quickly and to maintain consistent angular coverage for the full scan duration. Current motion-tolerant radial sampling strategies realize these characteristics by designing large angles between adjacent spokes. In certain MRI pulse sequences however, large spoke direction changes can exaggerate image artifacts due to eddy-current effects, introduce unintended contrast changes and artifacts due to incomplete magnetization spoiling, and/or increase acoustic noise.

Modular Piezoelectric Sensor Array with Beamforming Channels for Ultrasound Imaging

Researchers at the University of California, Davis have developed a large area sensor array for ultrasound imaging systems that utilizes high-bandwidth piezoelectric sensors and modular design elements.

Templated Synthesis Of Metal Nanorods

Brief description not available

Magnetically Responsive Photonic Nanochains

Brief description not available

(SD2020-421) Virtual Electrodes for Imaging of Cortex-Wide Brain Activity: Decoding of cortex-wide brain activity from local recordings of neural potentials

As an important tool for electrophysiological recordings, neural electrodes implanted on the brain surface have been instrumental in basic neuroscience research to study large-scale neural dynamics in various cognitive processes, such as sensorimotor processing as well as learning and memory. In clinical settings, neural recordings have been adopted as a standard tool to monitor the brain activity in epilepsy patients before surgery for detection and localization of epileptogenic zones initiating seizures and functional cortical mapping. Neural activity recorded from the brain surface exhibits rich information content about the collective neural activities reflecting the cognitive states and brain functions. For the interpretation of surface potentials in terms of their neural correlates, most research has focused on local neural activities.   From basic neuroscience research to clinical treatments and neural engineering, electrocorticography (ECoG) has been widely used to record surface potentials to evaluate brain function and develop neuroprosthetic devices. However, the requirement of invasive surgeries for implanting ECoG arrays significantly limits the coverage of different cortical regions, preventing simultaneous recordings from spatially distributed cortical networks. However, this rich information content of surface potentials encoded for the large-scale cortical activity remains unexploited and little is known on how local surface potentials are correlated with the spontaneous neural activities of distributed large-scale cortical networks. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:8.0pt; mso-para-margin-left:0in; line-height:107%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

(SD2019-220) Spatiotemporal resolution enhancement of biomedical images

Cardiac MRI is the clinical reference standard for visual and quantitative assessment of heart function. Specifically, cine balanced steady-state free precession (SSFP) can yield cardiac images with high myocardium–blood pool contrast for evaluation of left ventricular (LV) function. However, MRI suffers from long acquisition times, often requiring averaging across multiple heartbeats, and necessitates a trade-off among spatial resolution, temporal resolution, and scan time. Clinically, radiologists are forced to balance acquisition time with resolution to fit clinical needs, and certain applications such as real-time imaging may require small acquisition matrices. Image scaling is typically performed by using conventional upscaling methods, such as Fourier domain zero padding and bicubic interpolation. These methods, however, do not readily recover spatial detail, such as the myocardium–blood pool interface or delineation of papillary muscles.

Fetal Oximetry Measurement via Maternal Transabdominal Spectroscopy

Researchers at the University of California, Davis have developed a non-invasive, near-infrared, spectroscopy technique that measures fetal oxygen saturation via the maternal abdomen.

  • Go to Page: