Browse Category: Medical > Disease: Ophthalmology and Optometry

[Search within category]

Haptic Smart Phone-Cover: A Real-Time Navigation System for Individuals with Visual Impairment

Researchers at the University of California, Davis have developed a haptic interface designed to aid visually impaired individuals in navigating their environment using their portable electronic devices.

Tetracosapentaenoic Acid Treatment for AMD, Diabetic Retinopathy and Glaucoma

An innovative approach using tetracosapentaenoic acid to treat age-related eye disorders by replenishing critical lipids in the retina.

Use of Ophthalmic Acid for treatment of Parkinson’s disease

Researchers at UC Irvine have identified Opthalmic acid (Ophthalmate, OA) for treatment of Parkinson’s disease (PD), a degenerative neurological disorder that affects 1-2% of people over the age of 60. PD is characterized by progressive motor symptoms such as tremor, rigidity, slowness of movement and difficulty with balance. There is currently no cure for Parkinson’s disease, only treatments to help manage the symptoms. Pharmacological strategies for treating PD depend mainly on replacing lost dopamine due to the degeneration of dopamine neurons in the substantia nigra compacta. Six decades after its initial use, L-3, 4-dihydroxyphenylalalnine (L-DOPA), the dopamine precursor, remains the standard of care for treatment of PD motor symptoms. L-DOPA can readily cross the blood-brain barrier (BBB) and is converted to dopamine by aromatic amino acid decarboxylase (AADC). Initial treatments with L-DOPA can provide great relief from motor symptoms, but over time its therapeutic effects diminish, and dyskinesia (abnormal involuntary movements) can increase in PD patients. Ophthalmic acid acts as a novel neurotransmitter to counteract the motor symptoms in animal models of PD, with a longer duration of action. Ophthalmic acid can be used as a novel drug for treatment of PD and other neurological disorders.

Velocity-based Clinical Optoretinography System

Researchers at the University of California, Davis, have developed a new optoretinography) imaging and analysis system for diagnosing and monitoring retinal health and diseases.

Tetracosapentaenoic acid (24:5 n-3) treatment for AMD, Diabetic retinopathy and glaucoma

Researchers at UC Irvine have identified Tetracosapentaenoic acid (24:5 n-3) for treatment of age-related eye disorders such as age-related macular degeneration (AMD), diabetic retinopathy and glaucoma. Lipids such as very long chain polyunsaturated acids (VLC-PUFAs) and docosahexaenoic acid (DHA) play a critical role in the eye during the human lifespan. Aging causes decrease in these lipids leading to age related eye disorders. Increased lipids or lipid precursors in the eye may improve retina function and overall vision health.

Laser Photocoagulation To Stabilize Collector Channels To Enhance Aqueous Flows

Inventors at the University of California, Irvine have developed a laser-emitting device that treats glaucoma by enlarging and stabilizing collector channels in order to enhance aqueous outflow and reduce intraocular pressure (IOP).

Treatment Of Inherited Retinal Disease

Researchers at UCI have developed a method of treating inherited retinal diseases, such as Leber congenital amaurosis (LCA) and retinitis pigmentosa, by gene therapy of the RPE65 nonsense mutation. This method uses base editor-mediated genome-editing by viral delivery and lead to improved patient treatment through enhanced editing of single base pairs and reduced off-target genomic editing.

Anti-microbial, Immune-modulating, Naturally-derived Adjunctive Therapies

Researchers at the University of California, Davis have developed adjunctive therapies applicable to multiple types of infectious conditions. These therapies – derived from compounds found in natural herbs - also have potential prophylactic efficacy.

A Method to Measure Perceptual Thresholds

UCLA researchers in the Department of Psychology have developed a method to accurately measure a patient’s perceptual (visual, auditory, etc.) threshold unaffected by patient response bias.

Shear Wave Based Elasticity Imaging Using 3D Segmentation For Ocular Disease Diagnosis

 Retinal diseases, such as age-related macular degeneration (AMD), are the leading cause of blindness in the elderly population. Since no known cures are currently present, it is crucial to diagnose the condition in its early stages so that disease progression is monitored. Systems and methods for detecting and mapping the mechanical elasticity of retinal layers in the posterior eye are disclosed herein. A system including confocal shear wave acoustic radiation force optical coherence elastography (SW-ARF-OCE) is provided, wherein an ultrasound transducer and an optical scan head are co-aligned to facilitate in-vivo study of the retina. In addition, an automatic segmentation algorithm is used to isolate tissue layers and analyze the shear wave propagation within the retinal tissue to estimate mechanical stress on the retina and detect early stages of retinal diseases based on the estimated mechanical stress. US patent application no.  20190335996 

Method For Optogenetic Treatment Of Blindness Including Retinitis Pigmentosa

Retinitis pigmentosa (RP) refers to disorders characterized by degeneration of photoreceptors in the eye which hinders visual ability by nonfunctional neuronal activation and transmission of signals to the cortex. The prevalence of this disease is at least one million individuals.The optogenetic treatment is based on a very recent phenomenon where chemically identical neurons can be activated by blue light with high temporal precision by introducing a light-activated molecular channel, named channelrhodopsin-2 (ChR2), into specific groups of cells by genetic targeting. There is a need of a systematic method for nonviral delivery of the ChR2 gene into retinal ganglion cells of the adult retina so as to create visually evoked potentials in the visual cortex.The illustrated embodiments of the invention includes an in vivo method for sensitizing retinal ganglion cells in an eye without use of viral transfection includes the steps of nonviral in vivo delivering of gene coding for channelrhodospsin-2 (ChR2) or any photosensitive genetic material now known or later devised to target the retinal ganglion cells of a retina by intravitreous injection of plasmid DNA; and electroporating the plasmid into the retina. In addition to intravitreous injection of plasmid DNA or photosensitive genetic material, plasmid DNA or photosensitive genetic material may be inserted into the eye by ionotophoresis of the plasmids into the eye.

Automatic Identification of Ophthalmic Medication for The Visually Impaired

Researchers at UCI are developing technology that allows visually impaired patients to use their smartphones to take pictures of their eye medication/eye drop bottles. The technology will recognize the eye medication and verbally communicate the medication and will audibly confirm the medication along with the instructions on use.

Clinical Prognostication Test In Uveal Melanoma

Uveal melanoma commonly known as ocular or choroidal melanoma, is a rare cancer of the eye. It is an intraocular malignancy that arises from melanocytes of the choroid, ciliary body, and iris of the eye. Ocular melanoma is diagnosed in approximately 2,000-2,500 adults annually in the United States. In both the U.S. and Europe, this equates to about 5 - 7.5 cases per million people per year and, for people over 50 years old, the incidence rate increases to around 21 per million per year. While the primary tumor is highly treatable, about half of the patients will develop metastasis —typically to the liver. Metastatic disease is universally fatal. While traditional staging methods such as tumor size and location, still play a role in assessing metastatic risk, they are rarely used to individualize patient management plans. Newer methods include chromosomal gene expression analysis, yet these methods have their technical limitations. Clearly, what is needed is a better, cheaper and reproducible prognostic test.

Inhibition Of Lipofuscin Aggregation By Molecular Tweezers

UCLA researchers in the Departments of Neurology and Molecular Therapy & Medical Genetics have developed a novel approach toward broad inhibition of lipofuscin aggregation.

Stem Cell-Derived Exosomes for the Treatment of Corneal Scarring

UCLA researchers in the Department of Ophthalmology have developed a novel method to heal corneal scarring using exosomes from immortalized corneal stem cells.

Safe Vector for Glaucoma Gene Therapy

UCLA researchers from the Department of Ophthalmology have developed a novel gene therapy approach to cure eye diseases such as glaucoma using naked plasmid DNA.

Anti-Microbial Contact Lens With Ocular Drug Delivery

Anti-microbial, anti-fungal drug eluting contact lens for the controlled release of ophthalmic therapeutics.

Novel Anti-Bacterial, Anti-Fungal Nanopillared Surface

Medical devices are susceptible to contamination by harmful microbes, such as bacteria and fungi, which form biofilms on device surfaces. These biofilms are often resistant to antibiotics and other current treatments, resulting in over 2 million people per year suffering from diseases related to these contaminating microbes. Death rates for many of these diseases are high, often exceeding 50%. Researchers at UCI have developed a novel anti-bacterial and anti-fungal biocomposite that incorporates a nanopillared surface structure that can be applied as a coating to medical devices.

Sieve Container For Contactless Media Exchange For Cell Growth

Media that contains nutrients and growth factors is necessary to grow all types of cells, a process that is widely used in many fields of research. Such media should be routinely changed either to different media or a fresh batch of the same media. This change currently involves either using a pipette to transfer cells from their current dish of media to a new dish, or aspirating the media out of the dish and replacing it with new media. Both methods have inherent risks to stressing and damaging the cells. Researchers at UCI have developed a unique dish for growing cells that allows for safer aspiration of the old media, which reduces stress and damage to the cells.

Scanning Method For Uniform, Normal-Incidence Imaging Of Spherical Surface With A Single Beam

UCLA researchers have created a method that achieves uniform normal-incident illumination of a spherical surface by first projecting the sphere onto a Cartesian plane and then raster scanning it using an illuminating beam. This allows the scanned object, the illumination source, and the detector to remain stationary.

Xenobiotic-Free Culture System To Expand Human Limbal Stem Cells

UCLA researchers in the Departments of Opthalmology have developed a xenobiotic-free manufacturing process to produce transplantable human limbal stem cells for use in treating limbal stem cell deficiency.

Lipoxin Mediated Neuroprotection

This is small molecule neuroprotective activity secreted from resting astrocytes in the inner retina, where neighboring retinal ganglion cell neurons (RGCs) are vulnerable to irreversible damage in the neurodegenerative disease glaucoma.  

  • Go to Page: